Skip to main content

Advertisement

Log in

Sum-of-squares hierarchy lower bounds for symmetric formulations

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We introduce a method for proving Sum-of-Squares (SoS)/Lasserre hierarchy lower bounds when the initial problem formulation exhibits a high degree of symmetry. Our main technical theorem allows us to reduce the study of the positive semidefiniteness to the analysis of “well-behaved” univariate polynomial inequalities. We illustrate the technique on two problems, one unconstrained and the other with constraints. More precisely, we give a short elementary proof of Grigoriev/Laurent lower bound for finding the integer cut polytope of the complete graph. We also show that the SoS hierarchy requires a non-constant number of rounds to improve the initial integrality gap of 2 for the Min-Knapsack linear program strengthened with cover inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. More precisely, Grigoriev considers the positivstellensatz proof system, which is the dual of the SoS hierarchy considered in this paper. For brevity, we will use SoS hierarchy/proof system interchangeably as is customary in theoretical computer science literature. In optimization context the moment matrix formulation considered in this paper is usually called Lasserre hierarchy.

  2. The algebraic description of the two problem instances of Knapsack and Max-Cut in the complete graph, considered respectively in [20, 22] and in [30], are essentially the same, and we will use Max-Cut to refer to both.

  3. In [4], L(p) is written \(\tilde{ \mathbb {E}}[p]\) and called the “pseudo-expectation” of p.

  4. We define the set-valued permutation by \(\pi (I) = \left\{ \pi (i)~|~i \in I \right\} \).

  5. A quick calculation reveals that \((1-x)^k = \sum _{k=0}^n (-1)^k \left( {\begin{array}{c}n\\ k\end{array}}\right) x^k\). Taking the jth derivative with \(j<n\) on both sides, setting \(x=1\) and simplifying yields \(\sum _{k=0}^n (-1)^k \left( {\begin{array}{c}n\\ k\end{array}}\right) k(k-1)\cdots (k-j+1)=0\). Using this derivation one can show inductively that \(\sum _{k=0}^n (-1)^k\left( {\begin{array}{c}n\\ k\end{array}}\right) k^j = 0\) for every \(0 \le j<n\), and by taking linear combinations of such expressions one obtains that \(\sum _{k=0}^n (-1)\left( {\begin{array}{c}n\\ k\end{array}}\right) Q(k) = 0\) for any polynomial Q of degree at most \(n-1\).

  6. We show that the roots \(r_i\) can be assumed to be real numbers.

  7. Recall that at level n the integrality gap vanishes.

  8. Recall that \(\left( {\begin{array}{c}n\\ -k\end{array}}\right) =\left( {\begin{array}{c}n\\ n+k\end{array}}\right) =0\) for any positive integer k.

References

  1. Bansal, N., Buchbinder, N., Naor, J.: Randomized competitive algorithms for generalized caching. In: STOC, pp. 235–244 (2008)

  2. Bansal, N., Gupta, A., Krishnaswamy, R.: A constant factor approximation algorithm for generalized min-sum set cover. In: SODA, pp. 1539–1545 (2010)

  3. Bansal, N., Pruhs, K.: The geometry of scheduling. In: FOCS, pp. 407–414 (2010)

  4. Barak, B., Brandão, F.G.S.L., Harrow, A.W., Kelner, J.A., Steurer, D., Zhou, Y.: Hypercontractivity, sum-of-squares proofs, and their applications. In: STOC, pp. 307–326 (2012)

  5. Barak, B., Chan, S.O., Kothari, P.: Sum of squares lower bounds from pairwise independence. In: STOC (2015). arXiv:1501.00734

  6. Barak, B., Steurer, D.: Sum-of-squares proofs and the quest toward optimal algorithms. Electron. Colloq. Comput. Complex. (ECCC) 21, 59 (2014)

    MATH  Google Scholar 

  7. Bhaskara, A., Charikar, M., Vijayaraghavan, A., Guruswami, V., Zhou, Y.: Polynomial integrality gaps for strong SDP relaxations of densest k-subgraph. In: SODA, pp. 388–405 (2012)

  8. Bienstock, D., Zuckerberg, M.: Subset algebra lift operators for 0–1 integer programming. SIAM J. Optim. 15(1), 63–95 (2004)

    Article  MathSciNet  Google Scholar 

  9. Blekherman, G., ao Gouveia, J., Pfeiffer, J.: Sums of squares on the hypercube. CoRR arXiv:1402.4199 (2014)

  10. Blekherman, G., Parrilo, P., Thomas, R.: Semidefinite optimization and convex algebraic geometry. Society for Industrial and Applied Mathematics, Philadelphia, PA (2012). https://doi.org/10.1137/1.9781611972290

  11. Carnes, T., Shmoys, D.B.: Primal-dual schema for capacitated covering problems. In: IPCO, pp. 288–302 (2008)

  12. Carr, R.D., Fleischer, L., Leung, V.J., Phillips, C.A.: Strengthening integrality gaps for capacitated network design and covering problems. In: SODA, pp. 106–115 (2000)

  13. Chakrabarty, D., Grant, E., Könemann, J.: On column-restricted and priority covering integer programs. In: IPCO, pp. 355–368 (2010)

  14. Cheung, K.K.H.: Computation of the Lasserre ranks of some polytopes. Math. Oper. Res. 32(1), 88–94 (2007)

    Article  MathSciNet  Google Scholar 

  15. Chlamtac, E., Tulsiani, M.: Convex relaxations and integrality gaps. In: Anjos, M., Lasserre, J. (eds.) Handbook on Semidefinite, Conic and Polynomial Optimization, vol. 166, pp. 139–169. Springer, Berlin (2011)

    Chapter  Google Scholar 

  16. Cook, W., Dash, S.: On the matrix-cut rank of polyhedra. Math. Oper. Res. 26(1), 19–30 (2001)

    Article  MathSciNet  Google Scholar 

  17. Fawzi, H., Saunderson, J., Parrilo, P.: Sparse sum-of-squares certificates on finite Abelian groups. CoRR. arXiv:1503.01207 (2015)

  18. Godsil, C.: Association schemes (2010). Lecture Notes Available at http://quoll.uwaterloo.ca/mine/Notes/assoc2.pdf

  19. Goemans, M.X., Tunçel, L.: When does the positive semidefiniteness constraint help in lifting procedures? Math. Oper. Res. 26(4), 796–815 (2001). https://doi.org/10.1287/moor.26.4.796.10012

    Article  MathSciNet  MATH  Google Scholar 

  20. Grigoriev, D.: Complexity of positivstellensatz proofs for the knapsack. Comput. Complex. 10(2), 139–154 (2001)

    Article  MathSciNet  Google Scholar 

  21. Grigoriev, D.: Linear lower bound on degrees of positivstellensatz calculus proofs for the parity. Theor. Comput. Sci. 259(1–2), 613–622 (2001)

    Article  MathSciNet  Google Scholar 

  22. Grigoriev, D., Hirsch, E.A., Pasechnik, D.V.: Complexity of semi-algebraic proofs. In: STACS, pp. 419–430 (2002)

  23. Hong, S., Tunçel, L.: Unification of lower-bound analyses of the lift-and-project rank of combinatorial optimization polyhedra. Discrete Appl. Math. 156(1), 25–41 (2008). https://doi.org/10.1016/j.dam.2007.07.021

    Article  MathSciNet  MATH  Google Scholar 

  24. Khot, S.: On the power of unique 2-prover 1-round games. In: STOC, pp. 767–775 (2002). https://doi.org/10.1145/509907.510017

  25. Kurpisz, A., Leppänen, S., Mastrolilli, M.: A Lasserre lower bound for the min-sum single machine scheduling problem. In: ESA, pp. 853–864 (2015)

  26. Kurpisz, A., Leppänen, S., Mastrolilli, M.: On the hardest problem formulations for the 0/1 lasserre hierarchy. In: ICALP, pp. 872–885 (2015)

  27. Kurpisz, A., Leppänen, S., Mastrolilli, M.: Tight sum-of-squares lower bounds for binary polynomial optimization problems. pp. 78:1–78:14 (2016). https://doi.org/10.4230/LIPIcs.ICALP.2016.78

  28. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  Google Scholar 

  29. Laurent, M.: A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28(3), 470–496 (2003)

    Article  MathSciNet  Google Scholar 

  30. Laurent, M.: Lower bound for the number of iterations in semidefinite hierarchies for the cut polytope. Math. Oper. Res. 28(4), 871–883 (2003). https://doi.org/10.1287/moor.28.4.871.20508

    Article  MathSciNet  MATH  Google Scholar 

  31. Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefinite programming relaxations. In: STOC, pp. 567–576 (2015). https://doi.org/10.1145/2746539.2746599

  32. Lee, T., Prakash, A., de Wolf, R., Yuen, H.: On the sum-of-squares degree of symmetric quadratic functions. In: 31st Conference on Computational Complexity, CCC 2016, Tokyo, Japan, pp. 17:1–17:31 (2016). https://doi.org/10.4230/LIPIcs.CCC.2016.17

  33. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1(2), 166–190 (1991). https://doi.org/10.1137/0801013

    Article  MathSciNet  MATH  Google Scholar 

  34. Meka, R., Potechin, A., Wigderson, A.: Sum-of-squares lower bounds for planted clique. In: STOC, pp. 87–96 (2015). https://doi.org/10.1145/2746539.2746600

  35. O’Donnell, R.: Approximability and proof complexity (2013). Talk at ELC Tokyo. Slides Available at http://www.cs.cmu.edu/odonnell/slides/approx-proof-cxty.pps

  36. Parrilo, P.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology, California (2000)

  37. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP? In: STOC, pp. 245–254 (2008). https://doi.org/10.1145/1374376.1374414

  38. Rothvoß, T.: The lasserre hierarchy in approximation algorithms (2013). In: Lecture Notes for the MAPSP 2013—Tutorial

  39. Schoenebeck, G.: Linear level Lasserre lower bounds for certain k-csps. In: FOCS, pp. 593–602 (2008)

  40. Stephen, T., Tunçel, L.: On a representation of the matching polytope via semidefinite liftings. Math. Oper. Res. 24(1), 1–7 (1999)

    Article  MathSciNet  Google Scholar 

  41. Tulsiani, M.: CSP gaps and reductions in the Lasserre hierarchy. In: STOC, pp. 303–312 (2009)

  42. Wolsey, L.A.: Facets for a linear inequality in 0–1 variables. Math. Program. 8, 168–175 (1975)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Ola Svensson for helpful discussions and ideas regarding this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Kurpisz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is the full version of the paper that was presented at IPCO 2016. Supported by the Swiss National Science Foundation project 200020-169022 “Lift and Project Methods for Machine Scheduling Through Theory and Experiments” and by the project PZ00P2\(\_\)174117 “Theory and Applications of Linear and Semidefinite Relaxations for Combinatorial Optimization Problems”.

Appendices

Appendix

Omitted calculations for Max-Cut

Grigoriev [20] and Laurent [30] proved that the following solution is feasible for any \(\omega \le n/2\) up to round \(t\le \lfloor \omega \rfloor \) for the SoS hierarchy given in Definition 1:

$$\begin{aligned} y_{I} = \frac{\left( {\begin{array}{c}\omega \\ |I|\end{array}}\right) }{\left( {\begin{array}{c}n\\ |I|\end{array}}\right) } \qquad \forall I\subseteq N:|I|\le 2t. \end{aligned}$$
(36)

For a graph \(G = (V, E)\), the objective function of the Max-Cut problem in the usual formulation for 0 / 1 variables is \(\sum _{(i,j) \in E} (x_i-x_j)^2\). The cut value of the SoS relaxation of Definition 1 is then \(\sum _{(i,j) \in E} y_{\left\{ i \right\} }+y_{\left\{ j \right\} }-2y_{\left\{ i,j \right\} }\). When G is the complete graph and the solution to the SoS relaxation is taken to be (36), the cut value of the SoS relaxation is

$$\begin{aligned} \sum _{i=1}^{n-1} \sum _{j=i+1}^n y_{\left\{ i \right\} }+y_{\left\{ j \right\} }-2y_{\left\{ i,j \right\} }=2 \left( {\begin{array}{c}n\\ 2\end{array}}\right) \left( \frac{\left( {\begin{array}{c}\omega \\ 1\end{array}}\right) }{\left( {\begin{array}{c}n\\ 1\end{array}}\right) }-\frac{\left( {\begin{array}{c}\omega \\ 2\end{array}}\right) }{\left( {\begin{array}{c}n\\ 2\end{array}}\right) }\right) = \omega (n-\omega ). \end{aligned}$$

It is straightforward to check that for odd n and \(\omega = n/2\) this value is larger than the maximum cut in the complete graph of n vertices.

Change of basis. Using the change of basis of Lemma 1, solution \(\{y_I\}\) is equivalent to solution \(\{y^N_I\}\):

$$\begin{aligned} y^N_I&= \sum _{H\subseteq N{\setminus } I} (-1)^{|H|} y_{I\cup H} = \sum _{h=0}^{n-|I|} \left( {\begin{array}{c}n-|I|\\ h\end{array}}\right) (-1)^{h} \frac{\left( {\begin{array}{c}\omega \\ |I|+h\end{array}}\right) }{\left( {\begin{array}{c}n\\ |I|+h\end{array}}\right) } \nonumber \\&= y_I \left( {\begin{array}{c}\omega -|I|-1\\ n-|I|\end{array}}\right) (-1)^{n-|I|}= (n+1) \left( {\begin{array}{c}{\omega }\\ n+1\end{array}}\right) \frac{(-1)^{n-|I|}}{{\omega }-|I|} \end{aligned}$$
(37)

where we use the identity \(\sum _{\omega =0}^m (-1)^{\omega } \left( {\begin{array}{c}n\\ {\omega }\end{array}}\right) =(-1)^m\left( {\begin{array}{c}n-1\\ m\end{array}}\right) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurpisz, A., Leppänen, S. & Mastrolilli, M. Sum-of-squares hierarchy lower bounds for symmetric formulations. Math. Program. 182, 369–397 (2020). https://doi.org/10.1007/s10107-019-01398-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-019-01398-9

Keywords

Mathematics Subject Classification

Navigation