Skip to main content
Log in

A decomposition method for MINLPs with Lipschitz continuous nonlinearities

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Many mixed-integer optimization problems are constrained by nonlinear functions that do not possess desirable analytical properties like convexity or factorability or cannot even be evaluated exactly. This is, e.g., the case for many problems constrained by differential equations or for models that rely on black-box simulation runs. For these problem classes, we present, analyze, and test algorithms that solve mixed-integer problems with Lipschitz continuous nonlinearities. Our theoretical results depend on the assumptions made on the (in)exactness of function evaluations and on the knowledge of Lipschitz constants. If Lipschitz constants are known, we prove finite termination at approximate globally optimal points both for the case of exact and inexact function evaluations. If only approximate Lipschitz constants are known, we prove finite termination and derive additional conditions under which infeasibility can be detected. A computational study for gas transport problems and an academic case study show the applicability of our algorithms to real-world problems and how different assumptions on the constraint functions up- or downgrade the practical performance of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Short pipes are pipes with very short length such that the pressure loss is negligible.

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics. Wiley, New York (2000). https://doi.org/10.1002/9781118032824

    Book  MATH  Google Scholar 

  2. Al-Khayyal, F.A., Sherali, H.D.: On finitely terminating branch-and-bound algorithms for some global optimization problems. SIAM J. Optim. 10(4), 1049–1057 (2000). https://doi.org/10.1137/S105262349935178X

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  4. Baes, M., Del Pia, A., Nesterov, Y., Onn, S., Weismantel, R.: Minimizing lipschitz-continuous strongly convex functions over integer points in polytopes. Math. Progr. 134(1), 305–322 (2012). https://doi.org/10.1007/s10107-012-0545-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Becker, R., Rannacher, R.: An optimal control approach to a posteriori error estimation. In: Iserles, A. (ed.) Acta Numerica, pp. 1–102. Cambridge University Press, Cambridge (2001). https://doi.org/10.1017/S0962492901000010

    Chapter  Google Scholar 

  6. Belotti, P.: COUENNE: A User’s Manual. https://projects.coin-or.org/Couenne. Accessed 12 Feb 2018

  7. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131 (2013). https://doi.org/10.1017/S0962492913000032

    Article  MathSciNet  MATH  Google Scholar 

  8. Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4(1), 238–252 (1962). https://doi.org/10.1007/BF01386316

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optim. 15, 186–204 (2008). https://doi.org/10.1016/j.disopt.2006.10.011

    Article  MathSciNet  MATH  Google Scholar 

  10. Borchers, B., Mitchell, J.E.: An improved branch and bound algorithm for mixed integer nonlinear programs. Comput. Oper. Res. 21(4), 359–367 (1994). https://doi.org/10.1016/0305-0548(94)90024-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Burlacu, R., Geissler, B., Schewe, L.: Solving mixed-integer nonlinear programs using adaptively refined mixed-integer linear programs. Technical Report., Friedrich-Alexander Universität Erlangen-Nürnberg (2017). https://opus4.kobv.de/opus4-trr154/frontdoor/index/index/docId/151

  12. Colebrook, C.F.: Turbulent flow in pipes with particular reference to the transition region between smooth and rough pipe laws. J. Inst. Civ. Eng. 11(4), 133–156 (1939). https://doi.org/10.1680/ijoti.1939.13150

    Article  Google Scholar 

  13. DESFA. http://www.desfa.gr (2016)

  14. Dempe, S.: Foundations of Bi-level Programming. Springer, Berlin (2002). https://doi.org/10.1007/b101970

    Book  MATH  Google Scholar 

  15. Dempe, S.: Foundations of Bi-level Programming. Springer, Berlin (2002). https://doi.org/10.1007/b101970

    Book  MATH  Google Scholar 

  16. Dempe, S., Kalashnikov, V., Pérez-Valdés, G.A., Kalashnykova, N.: Bilevel Programming Problems. Springer, Berlin (2015). https://doi.org/10.1007/978-3-662-45827-3

    Book  MATH  Google Scholar 

  17. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Progr. 36(3), 307–339 (1986). https://doi.org/10.1007/BF02592064

    Article  MathSciNet  MATH  Google Scholar 

  18. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. In: Iserles, A. (ed.) Acta Numerica, pp. 105–158. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  19. Evtuschenko, Y.G.: Numerical methods for finding global extrema. USSR Comput. Math. Math. Phys. 11, 38–54 (1971). https://doi.org/10.1016/0041-5553(71)90065-6

    Article  Google Scholar 

  20. Feistauer, M.M.: Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, New York (1993)

    Google Scholar 

  21. Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Progr. 66(1), 327–349 (1994). https://doi.org/10.1007/BF01581153

    Article  MathSciNet  MATH  Google Scholar 

  22. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., San Francisco (1979)

    MATH  Google Scholar 

  23. Gauvin, J., Dubeau, F.: Differential properties of the marginal function in mathematical programming. In: Guignard, M. (ed.) Optimality and Stability in Mathematical Programming, pp. 101–119. Springer, Berlin (1982). https://doi.org/10.1007/BFb0120984

    Chapter  MATH  Google Scholar 

  24. Geissler, B.: Towards globally optimal solutions for MINLPs by discretization techniques with applications in gas network optimization. Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (2011)

  25. Geissler, B., Martin, A., Morsi, A., Schewe, L.: Using piecewise linear functions for solving MINLPs. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, The IMA Volumes in Mathematics and Its Applications, vol. 154, pp. 287–314 (2012). https://doi.org/10.1007/978-1-4614-1927-3_10

    Google Scholar 

  26. Geissler, B., Martin, A., Morsi, A., Schewe, L.: The MILP-relaxation approach. In: Evaluating Gas Network Capacities [49], chap. 6, pp. 103–122. https://doi.org/10.1137/1.9781611973693.ch6

    Chapter  Google Scholar 

  27. Geissler, B., Morsi, A., Schewe, L.: A new algorithm for MINLP applied to gas transport energy cost minimization. In: Jünger, M., Reinelt, G. (eds.) Facets of Combinatorial Optimization: Festschrift for Martin Grötschel, pp. 321–353. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-38189-8_14

    Chapter  MATH  Google Scholar 

  28. Geissler, B., Morsi, A., Schewe, L., Schmidt, M.: Solving power-constrained gas transportation problems using an MIP-based alternating direction method. Comput. Chem. Eng. 82, 303–317 (2015). https://doi.org/10.1016/j.compchemeng.2015.07.005

    Article  Google Scholar 

  29. Geissler, B., Morsi, A., Schewe, L., Schmidt, M.: Solving highly detailed gas transport MINLPs: block separability and penalty alternating direction methods. INFORMS J. Comput. (2017). https://doi.org/10.1287/ijoc.2017.0780. (in press)

    Article  MathSciNet  Google Scholar 

  30. Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972). https://doi.org/10.1007/BF00934810

    Article  MathSciNet  MATH  Google Scholar 

  31. Gleixner, A., Eifler, L., Gally, T., Gamrath, G., Gemander, P., Gottwald, R.L., Hendel, G., Hojny, C., Koch, T., Miltenberger, M., Müller, B., Pfetsch, M.E., Puchert, C., Rehfeldt, D., Schlösser, F., Serrano, F., Shinano, Y., Viernickel, J.M., Vigerske, S., Weninger, D., Witt, J.T., Witzig, J.: The SCIP optimization suite 5.0. Technical Report 17-61, ZIB, Takustr.7, 14195 Berlin (2017)

  32. Göttlich, S., Potschka, A., Ziegler, U.: Partial outer convexification for traffic light optimization in road networks. SIAM J. Sci. Comput. 39(1), B53–B75 (2017). https://doi.org/10.1137/15M1048197

    Article  MathSciNet  MATH  Google Scholar 

  33. Grimm, V., Schewe, L., Schmidt, M., Zöttl, G.: Uniqueness of market equilibrium on a network: a peak-load pricing approach. Eur. J. Oper. Res. 261(3), 971–983 (2017). https://doi.org/10.1016/j.ejor.2017.03.036

    Article  MathSciNet  MATH  Google Scholar 

  34. Gu, Z., Rothberg, E., Bixby, R.: Gurobi Optimizer Reference Manual, Version 6.5.0 (2015)

  35. Gugat, M., Hante, F.M., Hirsch-Dick, M., Leugering, G.: Stationary states in gas networks. Netw. Heterog. Media 10(2), 295–320 (2015). https://doi.org/10.3934/nhm.2015.10.295

    Article  MathSciNet  MATH  Google Scholar 

  36. Gugat, M., Leugering, G., Martin, A., Schmidt, M., Sirvent, M., Wintergerst, D.: Towards simulation based mixed-integer optimization with differential equations. Networks (2018). https://doi.org/10.1002/net.21812 (in press)

    Article  MathSciNet  Google Scholar 

  37. Gugat, M., Schultz, R., Wintergerst, D.: Networks of pipelines for gas with non-constant compressibility factor: stationary states. In: Computational and Applied Mathematics (2016). https://doi.org/10.1007/s40314-016-0383-z

    Article  MathSciNet  Google Scholar 

  38. Hansen, P., Jaumard, B.: Lipschitz optimization. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization, pp. 407–493. Springer, New York (1995). https://doi.org/10.1007/978-1-4615-2025-2_9

    Chapter  MATH  Google Scholar 

  39. Hante, F.M.: Relaxation methods for hyperbolic pde mixed-integer optimal control problems. Optim. Control Appl. Methods 38(6), 1103–1110 (2017). https://doi.org/10.1002/oca.2315

    Article  MathSciNet  MATH  Google Scholar 

  40. Hante, F.M., Sager, S.: Relaxation methods for mixed-integer optimal control of partial differential equations. Comput. Optim. Appl. 55(1), 197–225 (2013). https://doi.org/10.1007/s10589-012-9518-3

    Article  MathSciNet  MATH  Google Scholar 

  41. Horst, R.: Deterministic global optimization with partition sets whose feasibility is not known: application to concave minimization, reverse convex constraints, dc-programming, and lipschitzian optimization. J. Optim. Theory Appl. 58(1), 11–37 (1988). https://doi.org/10.1007/BF00939768

    Article  MathSciNet  MATH  Google Scholar 

  42. Horst, R., Thoai, N.V.: Branch-and-bound methods for solving systems of lipschitzian equations and inequalities. J. Optim. Theory Appl. 58(1), 139–145 (1988). https://doi.org/10.1007/BF00939776

    Article  MathSciNet  MATH  Google Scholar 

  43. Horst, R., Tuy, H.: On the convergence of global methods in multiextremal optimization. J. Optim. Theory Appl. 54(2), 253–271 (1987). https://doi.org/10.1007/BF00939434

    Article  MathSciNet  MATH  Google Scholar 

  44. Horst, R., Tuy, H.: Global Optimization, 2nd edn. Springer, Berlin (1996). https://doi.org/10.1007/978-3-662-03199-5

    Book  MATH  Google Scholar 

  45. Kannan, R., Monma, C.L.: On the computational complexity of integer programming problems. In: Henn, R., Korte, B., Oettli, W. (eds.) Optimization and Operations Research: Proceedings of a Workshop Held at the University of Bonn, pp. 161–172. Springer, Berlin (1977). https://doi.org/10.1007/978-3-642-95322-4_17

    Chapter  Google Scholar 

  46. Klatte, D., Kummer, B.: Stability properties of infima and optimal solutions of parametric optimization problems. In: Demyanov, V.F., Pallaschke, D. (eds.) Nondifferentiable Optimization: Motivations and Applications, pp. 215–229. Springer, Berlin (1985). https://doi.org/10.1007/978-3-662-12603-5_20

    Chapter  Google Scholar 

  47. Koch, T., Hiller, B., Pfetsch, M.E., Schewe, L.: Evaluating Gas Network Capacities. SIAM-MOS Series on Optimization. SIAM, Bangkok (2015). https://doi.org/10.1137/1.9781611973693

    Book  MATH  Google Scholar 

  48. Králik, J., Stiegler, P., Vostrý, Z., Záworka, J.: Dynamic Modeling of Large-Scale Networks with Application to Gas Distribution, Studies in Automation and Control, vol. 6. Elsevier, Amsterdam (1988)

    Google Scholar 

  49. Kvasov, D.E., Sergeyev, Y.D.: Lipschitz global optimization methods in control problems. Autom. Remote Control 74(9), 1435–1448 (2013). https://doi.org/10.1134/S0005117913090014

    Article  MathSciNet  MATH  Google Scholar 

  50. LaMaTTO++: A Framework for Modeling and Solving Mixed-Integer Nonlinear Programming Problems on Networks. http://www.mso.math.fau.de/edom/projects/lamatto.html (2017)

  51. Labbé, M., Violin, A.: Bilevel programming and price setting problems. 4OR 11(1), 1–30 (2013). https://doi.org/10.1007/s10288-012-0213-0

    Article  MathSciNet  MATH  Google Scholar 

  52. Leyffer, S.: Deterministic methods for mixed integer nonlinear programming. Ph.D. Thesis, University of Dundee, Dundee, Scotland, UK (1993)

  53. Li, M., Vicente, L.N.: Inexact solution of NLP subproblems in MINLP. J. Glob. Optim. 55(4), 877–899 (2013). https://doi.org/10.1007/s10898-012-0010-5

    Article  MathSciNet  MATH  Google Scholar 

  54. Lindo Systems Inc. https://www.lindo.com. Accessed on 12 Feb 2018

  55. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part i—convex underestimating problems. Math. Progr. 10(1), 147–175 (1976). https://doi.org/10.1007/BF01580665

    Article  MATH  Google Scholar 

  56. Misener, R., Floudas, C.A.: ANTIGONE: algorithms for continuous/integer global optimization of nonlinear equations. J. Glob. Optim. 59(2), 503–526 (2014). https://doi.org/10.1007/s10898-014-0166-2

    Article  MathSciNet  MATH  Google Scholar 

  57. Nemirovsky, A.S., Yudin, D.B.: Problem Complexity and Method Effciency in Optimization. Wiley, New York (1983)

    Google Scholar 

  58. Pfetsch, M.E., Fügenschuh, A., Geissler, B., Geissler, N., Gollmer, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rövekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert, B.M.: Validation of nominations in gas network optimization: models, methods, and solutions. Optim. Methods Softw. 30(1), 15–53 (2015). https://doi.org/10.1080/10556788.2014.888426

    Article  MathSciNet  MATH  Google Scholar 

  59. Pintér, J.: Extended univariate algorithms for n-dimensional global optimization. Computing 36(1), 91–103 (1986). https://doi.org/10.1007/BF02238195

    Article  MathSciNet  MATH  Google Scholar 

  60. Pintér, J.: Global optimization on convex sets. Oper. Res. Spektrum 8(4), 197–202 (1986). https://doi.org/10.1007/BF01721128

    Article  MathSciNet  MATH  Google Scholar 

  61. Pintér, J.: Globally convergent methods for n-dimensional multiextremal optimization. Optimization 17(2), 187–202 (1986). https://doi.org/10.1080/02331938608843118

    Article  MathSciNet  MATH  Google Scholar 

  62. Pintér, J.: Branch- and bound algorithms for solving global optimization problems with lipschitzian structure. Optimization 19(1), 101–110 (1988). https://doi.org/10.1080/02331938808843322

    Article  MathSciNet  MATH  Google Scholar 

  63. Pintér, J.: Nonlinear optimization with gams/lgo. J. Glob. Optim. 38(1), 79–101 (2007). https://doi.org/10.1007/s10898-006-9084-2

    Article  MathSciNet  MATH  Google Scholar 

  64. Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Springer, Berlin (1996). https://doi.org/10.1007/978-1-4757-2502-5

    Book  MATH  Google Scholar 

  65. Piyavskii, S.A.: An algorithm for finding the absolute extremum of a function. USSR Comput. Math. Math. Phys. 12, 57–67 (1972). https://doi.org/10.1016/0041-5553(72)90115-2

    Article  MathSciNet  Google Scholar 

  66. Rannacher, R., Vexler, B., Wollner, W.: A posteriori error estimation in PDE-constrained optimization with point wise inequality constraints. In: Constrained Optimization and Optimal Control for Partial Differential Equations, International Series of Numerical Mathematics, vol. 160, Springer, pp. 349–373 (2012). https://doi.org/10.1007/978-3-0348-0133-1_19

    MATH  Google Scholar 

  67. Ríos-Mercado, R.Z., Borraz-Sánchez, C.: Optimization problems in natural gas transportation systems: a state-of-the-art review. Appl. Energy 147, 536–555 (2015). https://doi.org/10.1016/j.apenergy.2015.03.017

    Article  Google Scholar 

  68. Sager, S., Jung, M., Kirches, C.: Combinatorial integral approximation. Math. Methods Oper. Res. 73(3), 363–380 (2011). https://doi.org/10.1007/s00186-011-0355-4

    Article  MathSciNet  MATH  Google Scholar 

  69. Saleh, J.: Fluid Flow Handbook. McGraw-Hill Handbooks. McGraw-Hill, New York (2002)

    Google Scholar 

  70. Schmidt, M., Assmann, D., Burlacu, R., Humpola, J., Joormann, I., Kanelakis, N., Koch, T., Oucherif, D., Pfetsch, M.E., Schewe, L., Schwarz, R., Sirvent, M.: GasLib—a library of gas network instances. Data 2(4), 40 (2017). https://doi.org/10.3390/data2040040

    Article  Google Scholar 

  71. Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks. Optim. Eng. 16(1), 131–164 (2015). https://doi.org/10.1007/s11081-014-9246-x

    Article  MathSciNet  MATH  Google Scholar 

  72. Schmidt, M., Steinbach, M.C., Willert, B.M.: The precise NLP model. In: Koch, T. et al. [49] Chap. 10, pp. 181–210. https://doi.org/10.1137/1.9781611973693.ch10

    Chapter  Google Scholar 

  73. Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks: validation and results. Optim. Eng. 17(2), 437–472 (2016). https://doi.org/10.1007/s11081-015-9300-3

    Article  MathSciNet  MATH  Google Scholar 

  74. Smith, E.M.B., Pantelides, C.C.: Global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 21, S791–S796 (1997). https://doi.org/10.1016/S0098-1354(97)87599-0

    Article  Google Scholar 

  75. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming, vol. 65. Springer, Berlin (2002). https://doi.org/10.1007/978-1-4757-3532-1

    Book  MATH  Google Scholar 

  76. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Progr. 99(3), 563–591 (2004). https://doi.org/10.1007/s10107-003-0467-6

    Article  MathSciNet  MATH  Google Scholar 

  77. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Progr. 103(2), 225–249 (2005). https://doi.org/10.1007/s10107-005-0581-8

    Article  MathSciNet  MATH  Google Scholar 

  78. Tuy, H., Horst, R.: Convergence and restart in branch-and-bound algorithms for global optimization. Application to concave minimization and d.c. optimization problems. Math. Progr. 41(1), 161–183 (1988). https://doi.org/10.1007/BF01580762

    Article  MathSciNet  MATH  Google Scholar 

  79. Vavasis, S.A.: Nonlinear Optimization: Complexity Issues. Oxford University Press Inc, Oxford (1991)

    MATH  Google Scholar 

  80. Verfürth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley, New York (1996)

    MATH  Google Scholar 

  81. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013). https://doi.org/10.1093/acprof:oso/9780199679423.001.0001

    Book  MATH  Google Scholar 

  82. Westerlund, T., Lundqvist, K.: Alpha-ECP, version 5.01: an interactive MINLP-solver based on the extended cutting plane method. Technical Report 01-178-A (2001)

  83. Westerlund, T., Pettersson, F.: An extended cutting plane method for solving convex MINLP problems. Comput. Chem. Eng. 19, 131–136 (1995). https://doi.org/10.1016/0098-1354(95)87027-X

    Article  Google Scholar 

  84. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Progr. 106(1), 25–57 (2006). https://doi.org/10.1007/s10107-004-0559-y

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has been performed as part of the Energie Campus Nürnberg and is supported by funding of the Bavarian State Government. We thank the DFG for their support within Project A05, A08, and B08 in CRC TRR 154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schmidt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, M., Sirvent, M. & Wollner, W. A decomposition method for MINLPs with Lipschitz continuous nonlinearities. Math. Program. 178, 449–483 (2019). https://doi.org/10.1007/s10107-018-1309-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1309-x

Keywords

Mathematics Subject Classification

Navigation