Skip to main content

A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization

  • Chapter
Facets of Combinatorial Optimization

Abstract

Complex real-world optimization tasks often lead to mixed-integer nonlinear problems (MINLPs). However, current MINLP algorithms are not always able to solve the resulting large-scale problems. One remedy is to develop problem specific primal heuristics that quickly deliver feasible solutions. This paper presents such a primal heuristic for a certain class of MINLP models. Our approach features a clear distinction between nonsmooth but continuous and genuinely discrete aspects of the model. The former are handled by suitable smoothing techniques; for the latter we employ reformulations using complementarity constraints. The resulting mathematical programs with equilibrium constraints (MPEC) are finally regularized to obtain MINLP-feasible solutions with general purpose NLP solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baumrucker, B.T., Renfro, J.G., Biegler, L.T.: MPEC problem formulations and solution strategies with chemical engineering applications. Comput. Chem. Eng. 32(12), 2903–2913 (2008)

    Article  Google Scholar 

  2. Borraz-Sánchez, C., Ríos-Mercado, R.Z.: A hybrid meta-heuristic approach for natural gas pipeline network optimization. In: Blesa, M., Blum, C., Roli, A., Sampels, M. (eds.) Hybrid Metaheuristics. Lecture Notes in Computer Science, vol. 3636, pp. 54–65. Springer, Berlin (2005). doi:10.1007/11546245_6

    Chapter  Google Scholar 

  3. Boyd, E.A., Scott, L.R., Wu, S.: Evaluating the quality of pipeline optimization algorithms. In: Pipeline Simulation Interest Group 29th Annual Meeting, Tucson, AZ, paper 9709 (1997)

    Google Scholar 

  4. Burgschweiger, J., Gnädig, B., Steinbach, M.C.: Optimization models for operative planning in drinking water networks. Optim. Eng. 10(1), 43–73 (2009). doi:10.1007/s11081-008-9040-8

    Article  MathSciNet  Google Scholar 

  5. Burgschweiger, J., Gnädig, B., Steinbach, M.C.: Nonlinear programming techniques for operative planning in large drinking water networks. Open Appl. Math. J. 3, 14–28 (2009). doi: 10.2174/1874114200903010014

    Article  MathSciNet  Google Scholar 

  6. Carter, R.G.: Compressor station optimization: computational accuracy and speed. In: Pipeline Simulation Interest Group 28th Annual Meeting, paper 9605 (1996)

    Google Scholar 

  7. Cobos-Zaleta, D., Ríos-Mercado, R.Z.: A MINLP model for a problem of minimizing fuel consumption on natural gas pipeline networks. In: Proc. XI Latin-Ibero-American Conference on Operations Research, paper A48-01, pp. 1–9 (2002)

    Google Scholar 

  8. Dantzig, G.B.: On the significance of solving linear programming problems with some integer variables. Econometrica 28(1), 30–44 (1960). www.jstor.org/stable/1905292

    Article  MathSciNet  MATH  Google Scholar 

  9. de Wolf, D., Smeers, Y.: The gas transmission problem solved by an extension of the simplex algorithm. Manag. Sci. 46(11), 1454–1465 (2000)

    Article  MATH  Google Scholar 

  10. DeMiguel, A.V., Friedlander, M.P., Nogales, F.J., Scholtes, S.: A two-sided relaxation scheme for mathematical programs with equilibrium constraints. SIAM J. Optim. 16(1), 587–609 (2005). doi:10.1109/TIT.2005.860448

    Article  MathSciNet  MATH  Google Scholar 

  11. Domschke, P., Geißler, B., Kolb, O., Lang, J., Martin, A., Morsi, A.: Combination of nonlinear and linear optimization of transient gas networks. INFORMS J. Comput. 23(4), 605–617 (2011). doi:10.1287/ijoc.1100.0429

    Article  MathSciNet  MATH  Google Scholar 

  12. Ehrhardt, K., Steinbach, M.C.: KKT systems in operative planning for gas distribution networks. Proc. Appl. Math. Mech. 4(1), 606–607 (2004)

    Article  Google Scholar 

  13. Ehrhardt, K., Steinbach, M.C.: Nonlinear optimization in gas networks. In: Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 139–148. Springer, Berlin (2005)

    Chapter  Google Scholar 

  14. Fischer, A.: A special Newton-type optimization method. Optimization 24(3–4), 269–284 (1992). doi:10.1080/02331939208843795

    Article  MathSciNet  MATH  Google Scholar 

  15. Fügenschuh, A., Geißler, B., Gollmer, R., Hayn, C., Henrion, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Mirkov, R., Morsi, A., Römisch, W., Rövekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Willert, B.M.: Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets. Technical report ZR 13-13, ZIB (2013)

    Google Scholar 

  16. GAMS—A Users Guide. Redwood City (1988)

    Google Scholar 

  17. Grossmann, I.E.: Review of nonlinear mixed-integer and disjunctive programming techniques. Optim. Eng. 3(3), 227–252 (2002). doi:10.1023/A:1021039126272

    Article  MathSciNet  MATH  Google Scholar 

  18. Hoheisel, T., Kanzow, C., Schwartz, A.: Theoretical and numerical comparison of relaxation methods for mathematical programs with complementarity constraints. Preprint 299, Institute of Mathematics, University of Würzburg (2010)

    Google Scholar 

  19. Hu, X.M., Ralph, D.: Convergence of a penalty method for mathematical programming with complementarity constraints. J. Optim. Theory Appl. 123, 365–390 (2004)

    Article  MathSciNet  Google Scholar 

  20. Koch, T., Bargmann, D., Ebbers, M., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R., Gotzes, U., Hayn, C., Heitsch, H., Henrion, R., Hiller, B., Humpola, J., Joormann, I., Kühl, V., Lehmann, T., Leövey, H., Martin, A., Mirkov, R., Möller, A., Morsi, A., Oucherif, D., Pelzer, A., Pfetsch, M.E., Schewe, L., Römisch, W., Rövekamp, J., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Spreckelsen, K., Stangl, C., Steinbach, M.C., Steinkamp, A., Wegner-Specht, I., Willert, B.M., Vigerske, S. (eds.): From Simulation to Optimization: Evaluating Gas Network Capacities. In preparation

    Google Scholar 

  21. Kraemer, K., Marquardt, W.: Continuous reformulation of MINLP problems. In: Diehl, M., Glineur, F., Jarlebring, E., Michiels, W. (eds.) Recent Advances in Optimization and Its Applications in Engineering, pp. 83–92. Springer, Berlin (2010). doi:10.1007/978-3-642-12598-0_8

    Chapter  Google Scholar 

  22. LaMaTTO++. www.mso.math.fau.de/edom/projects/lamatto.html

  23. Leyffer, S., López-Calva, G., Nocedal, J.: Interior methods for mathematical programs with complementarity constraints. SIAM J. Optim. 17, 52–77 (2004)

    Article  Google Scholar 

  24. Markowitz, H.M., Manne, A.S.: On the solution of discrete programming problems. Econometrica 25(1), 84–110 (1957). www.jstor.org/stable/1907744

    Article  MathSciNet  MATH  Google Scholar 

  25. Martin, A., Möller, M.: Cutting planes for the optimization of gas networks. In: Bock, H.G., Kostina, E., Phu, H.X., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Complex Processes, pp. 307–329. Springer, Berlin (2005)

    Chapter  Google Scholar 

  26. Martin, A., Möller, M., Moritz, S.: Mixed integer models for the stationary case of gas network optimization. Math. Program., Ser. B 105(2–3), 563–582 (2006). doi:10.1007/s10107-005-0665-5

    Article  MATH  Google Scholar 

  27. Martin, A., Mahlke, D., Moritz, S.: A simulated annealing algorithm for transient optimization in gas networks. Math. Methods Oper. Res. 66(1), 99–115 (2007). doi:10.1007/s00186-006-0142-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Meyer, R.R.: Mixed integer minimization models for piecewise-linear functions of a single variable. Discrete Math. 16(2), 163–171 (1976). doi:10.1016/0012-365X(76)90145-X

    Article  MathSciNet  MATH  Google Scholar 

  29. Osiadacz, A.: Nonlinear programming applied to the optimum control of a gas compressor station. Int. J. Numer. Methods Eng. 15(9), 1287–1301 (1980). doi:10.1002/nme.1620150902

    Article  MathSciNet  MATH  Google Scholar 

  30. Pfetsch, M.E., Fügenschuh, A., Geißler, B., Geißler, N., Gollmer, R., Hiller, B., Humpola, J., Koch, T., Lehmann, T., Martin, A., Morsi, A., Rövekamp, J., Schewe, L., Schmidt, M., Schultz, R., Schwarz, R., Schweiger, J., Stangl, C., Steinbach, M.C., Vigerske, S., Willert, B.M.: Validation of nominations in gas network optimization: models, methods, and solutions. Technical report ZR 12-41, ZIB (2012)

    Google Scholar 

  31. Pratt, K.F., Wilson, J.G.: Optimization of the operation of gas transmission systems. Trans. Inst. Meas. Control 6(5), 261–269 (1984). doi:10.1177/014233128400600411

    Article  Google Scholar 

  32. Raman, R., Grossmann, I.E.: Modeling and computational techniques for logic based integer programming. Comput. Chem. Eng. 18(7), 563–578 (1994)

    Article  Google Scholar 

  33. Ríos-Mercado, R.Z., Wu, S., Scott, L.R., Boyd, A.E.: A reduction technique for natural gas transmission network optimization problems. Ann. Oper. Res. 117, 217–234 (2002)

    Article  MATH  Google Scholar 

  34. Ríos-Mercado, R.Z., Kim, S., Boyd, A.E.: Efficient operation of natural gas transmission systems: a network-based heuristic for cyclic structures. Comput. Oper. Res. 33(8), 2323–2351 (2006). doi:10.1016/j.cor.2005.02.003

    Article  MATH  Google Scholar 

  35. Scheel, H., Scholtes, S.: Mathematical programs with complementarity constraints: stationarity, optimality and sensitivity. Math. Oper. Res. 25, 1–22 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks—part 1: model components. IfAM preprint 94, Inst. of Applied Mathematics, Leibniz Universität Hannover (2012, submitted)

    Google Scholar 

  37. Schmidt, M., Steinbach, M.C., Willert, B.M.: High detail stationary optimization models for gas networks—part 2: validation and results (2013, in preparation)

    Google Scholar 

  38. Scholtes, S.: Convergence properties of a regularization scheme for mathematical programs with complementarity constraints. SIAM J. Optim. 11(4), 918–936 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Stein, O., Oldenburg, J., Marquardt, W.: Continuous reformulations of discrete-continuous optimization problems. Comput. Chem. Eng. 28(10), 1951–1966 (2004)

    Article  Google Scholar 

  40. Steinbach, M.C.: On PDE solution in transient optimization of gas networks. J. Comput. Appl. Math. 203(2), 345–361 (2007). doi:10.1016/j.cam.2006.04.018

    Article  MathSciNet  MATH  Google Scholar 

  41. Sun, D., Qi, L.: On NCP-functions. Computational optimization—a tribute to Olvi Mangasarian, part II. Comput. Optim. Appl. 13(1–3), 201–220 (1999). doi:10.1023/A:1008669226453

    Article  MathSciNet  MATH  Google Scholar 

  42. Vielma, J.P., Nemhauser, G.L.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. In: Lodi, A., Panconesi, A., Rinaldi, G. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 5035, pp. 199–213. Springer, Berlin (2008). doi:10.1007/978-3-540-68891-4_14

    Chapter  Google Scholar 

  43. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006). doi:10.1007/s10107-004-0559-y

    Article  MathSciNet  MATH  Google Scholar 

  44. Wright, S., Somani, M., Ditzel, C.: Compressor station optimization. In: Pipeline Simulation Interest Group 30th Annual Meeting, paper 9805 (1998)

    Google Scholar 

  45. Wu, S., Ríos-Mercado, R.Z., Boyd, A.E., Scott, L.R.: Model relaxations for the fuel cost minimization of steady-state gas pipeline networks. Technical report TR-99-01, University of Chicago (1999)

    Google Scholar 

Download references

Acknowledgements

This work has been funded by the Federal Ministry of Economics and Technology owing to a decision of the German Bundestag. We would next like to thank our industry partner Open Grid Europe GmbH and the project partners in the ForNe consortium. The authors are also indebted to an anonymous referee whose comments and suggestions greatly improved the quality of the paper. Finally, the second author would like to express his gratitude for the challenging and stimulating scientific environment and the personal support that Martin Grötschel provided to him as a PostDoc in his research group at ZIB, and for the continued fruitful cooperation that he is now experiencing as a ZIB Fellow with his own research group at Leibniz Universität Hannover. We dedicate this paper to Martin Grötschel on the occasion of his 65th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc C. Steinbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schmidt, M., Steinbach, M.C., Willert, B.M. (2013). A Primal Heuristic for Nonsmooth Mixed Integer Nonlinear Optimization. In: Jünger, M., Reinelt, G. (eds) Facets of Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38189-8_13

Download citation

Publish with us

Policies and ethics