Skip to main content
Log in

On partial smoothness, tilt stability and the \({\mathcal {VU}}\)-decomposition

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Under the assumption of prox-regularity and the presence of a tilt stable local minimum we are able to show that a \({\mathcal {VU}}\) like decomposition gives rise to the existence of a smooth manifold on which the function in question coincides locally with a smooth function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artacho Aragón, F.J.: Characterization of metric regularity of subdifferentials. J. Convex Anal. 15(2), 365–380 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Bačák, M., Borwein, J.M., Eberhard, A., Mordukhovich, B.S.: Infimal convolutions and Lipschitzian properties of subdifferentials for prox-regular functions in Hilbert spaces. J. Convex Anal. 17(3–4), 737–763 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer, New York (2000)

    Book  Google Scholar 

  4. Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28(4), 789–809 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27(1), 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. Springer Series in Operations Research and Financial Engineering, A view from variational analysis, 2nd edn. Springer, New York (2014)

    Google Scholar 

  7. Drusvyatskiy, D., Lewis, A.S.: Tilt stability, uniform quadratic growth, and strong metric regularity of the subdifferential. SIAM J. Optim. 23(1), 256–267 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eberhard, A., Sivakumaran, R., Wenczel, R.: On the variational behaviour of the subhessians of the Lasry-Lions envelope. J. Convex Anal. 13(3–4), 647–685 (2006)

    MathSciNet  MATH  Google Scholar 

  9. Eberhard, A., Wenczel, R.: On the calculus of limiting subhessians. Set Valued Anal. 15(4), 377–424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eberhard, A., Wenczel, R.: Some sufficient optimality conditions in nonsmooth analysis. SIAM J. Optim. 20(1), 251–296 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eberhard, A., Wenczel, R.: A study of tilt-stable optimality and sufficient conditions. Nonlinear Anal. 75(3), 1260–1281 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eberhard, A.C., Pearce, C.E.M.: A sufficient optimality condition for nonregular problems via a nonlinear Lagrangian. Numer. Algebra Control Optim. 2(2), 301–331 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eberhard, A.: Prox-regularity and subjets. In: Optimization and Related Topics (Ballarat/Melbourne, 1999), vol. 47 of Appl. Optim., pp. 237–313. Kluwer Acad. Publ., Dordrecht (2001)

  14. Eberhard, A., Nyblom, M., Ralph, D.: Applying generalised convexity notions to jets. In: Generalized Convexity, Generalized Monotonicity: Recent Results (Luminy, 1996), vol. 27 of Nonconvex Optim. Appl., pp. 111–157. Kluwer Acad. Publ., Dordrecht (1998)

  15. Eberhard, A.C., Mordukhovich, B.S.: First-order and second-order optimality conditions for nonsmooth constrained problems via convolution smoothing. Optimization 60(1–2), 253–275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mordukhovich, B.S., Nghai, T.T.A.: Second-order characterizations of tilt stability with applications to nonlinear programming. Math. Program Ser. A 149, 83–104 (2015)

    Article  MathSciNet  Google Scholar 

  17. Gorni, G.: Conjugation and second-order properties of convex functions. J. Math. Anal. Appl. 158(2), 293–315 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hare, W.: Numerical analysis of \({\cal{VU}}\)-decomposition, \({\cal{U}}\)-gradient, and \({\cal{U}}\)-Hessian approximations. SIAM J. Optim. 24(4), 1890–1913 (2014)

    Article  MathSciNet  Google Scholar 

  19. Hare, W.L.: Functions and sets of smooth substructure: relationships and examples. Comput. Optim. Appl. 33(2–3), 249–270 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hare, W.L., Poliquin, R.A.: The quadratic sub-Lagrangian of a prox-regular function. In: Proceedings of the Third World Congress of Nonlinear Analysts, Part 2 (Catania, 2000), vol. 47, pp. 1117–1128 (2001)

  21. Hare, W.L., Poliquin, R.A.: Prox-regularity and stability of the proximal mapping. J. Convex Anal. 14(3), 589–606 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Holmes, R.B.: Geometric Functional Analysis and Its Applications. Graduate Texts in Mathematics, vol. 24. Springer, New York (1975)

    Book  Google Scholar 

  23. Ioffe, A.D., Penot, J.-P.: Limiting sub-Hessians, limiting subjets and their calculus. Trans. Am. Math. Soc. 349(2), 789–807 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lemaréchal, C., Oustry, F., Sagastizábal, C.: The \({\cal{U}}\)-Lagrangian of a convex function. Trans. Am. Math. Soc. 352(2), 711–729 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lewis, A.S.: Active sets, nonsmoothness, and sensitivity. SIAM J. Optim 13(3), 702–725 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lewis, A.S., Zhang, S.: Partial smoothness, tilt stability, and generalized Hessians. SIAM J. Optim. 23(1), 74–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mifflin, R., Sagastizábal, C.: Proximal points are on the fast track. J. Convex Anal 9(2), 563–579 (2002). Special issue on optimization (Montpellier, 2000)

    MathSciNet  MATH  Google Scholar 

  28. Mifflin, R., Sagastizábal, C.: Primal-dual gradient structured functions: second-order results; links to epi-derivatives and partly smooth functions. SIAM J. Optim. 13(4), 1174–1194 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mifflin, R., Sagastizábal, C.: \({\cal{VU}}\)-smoothness and proximal point results for some nonconvex functions. Optim. Methods Softw. 19(5), 463–478 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mifflin, R., Sagastizábal, C.: On the relation between \({\cal{U}}\)-Hessians and second-order epi-derivatives. Eur. J. Oper. Res. 157(1), 28–38 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mifflin, R., Sagastizábal, C.: A \({mathcal VU }\)-algorithm for convex minimization. Math. Program. 104(2–3, Ser. B), 583–608 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Miller, S.A., Malick, J.: Newton methods for nonsmooth convex minimization: connections among \({mathcal{U}}\)-Lagrangian, Riemannian Newton and SQP methods. Math. Program. 104(2–3, Ser. B), 609–633 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation. I, volume 330 of Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences). Springer, Berlin (2006)

    Google Scholar 

  34. Penot, J.-P.: Sub-Hessians, super-Hessians and conjugation. Nonlinear Anal. 23(6), 689–702 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Poliquin, R.A., Rockafellar, R.T.: Prox-regular functions in variational analysis. Trans. Am. Math. Soc. 348(5), 1805–1838 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Poliquin, R.A., Rockafellar, R.T.: Tilt stability of a local minimum. SIAM J. Optim. 8(2), 287–299 (1998). (electronic),

    Article  MathSciNet  MATH  Google Scholar 

  37. Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970)

    Google Scholar 

  38. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences). Springer, Berlin (1998)

    Google Scholar 

  39. Studniarski, M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24(5), 1044–1049 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wright, S.J.: Identifiable surfaces in constrained optimization. SIAM J. Control Optim. 31(4), 1063–1079 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Eberhard.

Additional information

This research was in part supported by the ARC Discovery Grant no. DP120100567.

Appendix A

Appendix A

The prove Proposition 15 we need the following results regarding the variation limits of rank-1 supports.

Proposition 56

([13], Corollary 3.3) Let \(\{\mathcal {A}(v)\}_{v\in W}\) be a family of non-empty rank-1 representers (i.e. \(\mathcal {A}(v)\subseteq \mathcal {S}\left( n\right) \) and \(-\mathcal {P}\left( n\right) \subseteq 0^{+}\mathcal {A}(v)\) for all v) and W a neighbourhood of w. Suppose that \(\limsup _{v\rightarrow w}\mathcal {A}(v)=\mathcal {A}(w)\). Then

$$\begin{aligned} \limsup _{v\rightarrow w}\inf _{u\rightarrow h}q\left( \mathcal {A}(v)\right) (u)=q\left( \mathcal {A}(w)\right) (h) \end{aligned}$$
(41)

Recall that \((x^{\prime },z^{\prime })\rightarrow _{S_{p}(f)}(\bar{x},z)\) means \(x^{\prime }\rightarrow ^{f}\bar{x}\), \(\ z^{\prime }\in \partial _{p}f(x^{\prime })\) and \(z^{\prime }\rightarrow z\).

Corollary 57

Let \(f:{\mathbb {R}}^{n}\rightarrow {\mathbb {R}}_{\infty }\) be proper and lower semicontinuous with \(h\in b^{1}(\underline{\partial }^{2}f(\bar{x},\bar{z} )). \) Then

$$\begin{aligned} q\left( \underline{\partial }^{2}f(\bar{x},\bar{z})\right) \left( h\right) =\limsup _{(x^{\prime },z^{\prime })\rightarrow _{S_{p}(f)}(\bar{x},\bar{z} )}\inf _{u\rightarrow h}q\left( \partial ^{2,-}f(x^{\prime },z^{\prime })\right) (u). \end{aligned}$$
(42)

Proof

Use Proposition 56 and Remark 11. \(\square \)

Denote the infimal convolution of f by \(f_{\lambda }(x):=\inf _{u\in {\mathbb {R}}^{n}}\left( f(u)+\frac{1}{2\lambda }\Vert x-u\Vert ^{2}\right) \). Recall that \(f_{\lambda }\left( x\right) -\frac{1}{2\lambda }\left\| x\right\| ^{2}=-\left( f\ +\frac{\lambda }{2}\Vert \cdot \Vert ^{2}\right) ^{*}(\lambda x)\) and this \(f_{\lambda }\) is always para-concave. Recall that in [13, Lemma 2.1], it is observed that f is locally \(C^{1,1}\) iff f is simultaneously a locally para-convex and para-concave function. Recall [38, Proposition 4.15] that states that the limit infimum of a collection of convex sets is also convex and that the upper epi-limit of a family of functions has an epi-graph that is the limit infimum of the family of epi-graphs. Consequently the epi-limit supremum of a family of convex functions give rise to convex function.

Proof

(of Proposition 15) Begin by assuming f is locally para-convex. Let \(\frac{c}{2}>0\) be the modulus of para-convexity of f on \(B_{\delta }( \bar{x})\), \(x\in B_{\delta }(\bar{x})\) with \(z\in \partial f\left( x\right) \) and \(\partial ^{2,-}f\left( x,z\right) \ne \emptyset \). Let \(C_{t}(x)=\{h\mid x+th\in B_{\delta }(\bar{x})\}\) then we have

$$\begin{aligned} h\mapsto \left( \frac{2}{t^{2}}\right) \left( f(x+th)-f(x)-t\langle z,h\rangle \right) +\frac{c}{t^{2}}\left( \Vert x+th\Vert ^{2}-\Vert x\Vert ^{2}-t\langle 2x,h\rangle \right) \end{aligned}$$

convex on \(C_{t}(x)\) since \(x\mapsto f(x)+\frac{c}{2}\Vert x\Vert ^{2}\) is convex on \(B_{\delta }(\bar{x})\). Next note that for every \(K>0\) there exists a \(\bar{t}>0\) such that for \(0<t<\bar{t}\) we have \(B_{K}(0)\subseteq C_{t}(x)\). Once again restricting f to \(B_{\delta }(\bar{x})\) we get a family

$$\begin{aligned} \{h\mapsto \Delta _{2}f(x,t,z,h)+\frac{c}{t^{2}}\left( \Vert x+th\Vert ^{2}-\Vert x\Vert ^{2}-t\langle 2x,h\rangle \right) \}_{t<\bar{t}} \end{aligned}$$
(43)

of convex functions with domains containing \(C_{t}(x)\,\)(for each t) and whose convexity (on their common domain of convexity) will be preserved under an upper epi-limit as \(t\downarrow 0\). Thus, using the fact that \(\frac{c}{t^{2}}\left( \Vert x+th\Vert ^{2}-\Vert x\Vert ^{2}-t\langle 2x,h\rangle \right) \) converges uniformly on bounded sets to \(c\Vert h\Vert ^{2}\), we have the second order circ derivative (introduced in [23]) given by:

$$\begin{aligned} f^{\uparrow \uparrow }(x,z,h)+c\Vert h\Vert ^{2}&:=\limsup _{(x^{\prime },z^{\prime })\rightarrow _{S_{p}}(x,z),t\downarrow 0}\inf _{u^{\prime }\rightarrow h}(\Delta _{2}f(x^{\prime },t,z^{\prime },u^{\prime }) \\&\qquad +\frac{c}{t^{2}}\left( \Vert x+th\Vert ^{2}-\Vert x\Vert ^{2}-t\langle 2x,h\rangle \right) ) \end{aligned}$$

which is convex on \(B_{K}(0)\), for every \(K>0\), being obtained by taking an epi-limit supremum of a family of convex functions given in (43). We then have \(h\mapsto f^{\uparrow \uparrow }(x,z,h)+c\Vert h\Vert ^{2}\) convex (with \(f^{\uparrow \uparrow }(x,z,\cdot )\) having a modulus of para-convexity of c).

From [4], Proposition 4.1 particularized to \(C^{1,1}\) functions f we have that there exists a \(\eta \in [x,y]\) such that

$$\begin{aligned} f(y)\in f(x)+\langle \nabla f(x),y-x\rangle +\frac{1}{2}\langle \overline{D}^{2}f(\eta ),(y-x)(y-x)^{T}\rangle . \end{aligned}$$
(44)

Using (44), Proposition 7 and the variational result corollary 56, we have when the limit is finite (for \(\bar{z}:=\nabla f(\bar{x})\))

$$\begin{aligned}&f^{\uparrow \uparrow }(\bar{x},\bar{z},h)\\&\quad :=\limsup _{(x^{\prime },z^{\prime })\rightarrow _{S_{p}}(\bar{x},\bar{z}),\;t\downarrow 0}\inf _{u^{\prime }\rightarrow h}\Delta _{2}f(x^{\prime },t,z^{\prime },u^{\prime }) \\&\quad \le \limsup _{x^{\prime }\rightarrow \bar{x},\;t\downarrow 0}\inf _{u^{\prime }\rightarrow h}\Delta _{2}f(x^{\prime },t,\nabla f(x^{\prime }),u^{\prime })\le \limsup _{\eta \rightarrow \bar{x}}\inf _{u^{\prime }\rightarrow h}q\left( \overline{D}^{2}f(\eta )\right) (u^{\prime }) \\&\quad \le q\left( \overline{D}^{2}f(\bar{x})-\mathcal {P}(n)\right) (h)\le q\left( \underline{\partial }^{2}f(\bar{x},\bar{z})\right) (h)\le f^{\uparrow \uparrow }(\bar{x},\bar{z},h), \end{aligned}$$

where the last inequality follows from [23, Proposition 6.5].

Now assuming f is quadratically minorised and is prox-regular at \(\bar{x}\ \) for \(\bar{p}\in \partial f(\bar{x})\) with respect to \(\varepsilon \) and r. Let \(g(x):=f(x+\bar{x})-\langle \bar{z},x+\bar{x}\rangle \). Then \(0\in \partial g(0)\) and we now consider the infimal convolution \(g_{\lambda }(x)\) which is para-convex locally with a modulus \(c:=\frac{\lambda r}{2(\lambda -r)}\), prox-regular at 0 (see [35, Theorem 5.2]). We may now use the first part of the proof to deduce that \(g_{\lambda }^{\uparrow \uparrow }(0,0,\cdot )\) is para-convex with modulus \(c=\frac{2\lambda r}{(\lambda -r)}\) and \(g_{\lambda }^{\uparrow \uparrow }(0,0,h)=q\left( \underline{\partial }^{2}g_{\lambda }(0,0)\right) (h)\) since \(g_{\lambda }\) is \(C^{1,1}\) (being both para-convex and para-concave). Using Corollary 56 and [8, Proposition 4.8 part 2.] we obtain

$$\begin{aligned} \limsup _{\lambda \rightarrow \infty }\inf _{h^{\prime }\rightarrow h}g_{\lambda }^{\uparrow \uparrow }(0,0,h^{\prime })=q\left( \limsup _{\lambda \rightarrow \infty }\underline{\partial }^{2}g_{\lambda }(0,0)\right) (h)=q\left( \underline{\partial }^{2}g(0,0)\right) (h). \end{aligned}$$

Thus \(q\left( \underline{\partial }^{2}g(0,0)\right) (h)+r\Vert h\Vert ^{2}=\limsup _{\lambda \rightarrow \infty }\inf _{h^{\prime }\rightarrow h}\left( g_{\lambda }^{\uparrow \uparrow }(0,0,h^{\prime })+\frac{\lambda r}{(\lambda -r)}\Vert h\Vert ^{2}\right) \) is convex, being the variational upper limit of convex functions. One can easily verify that \(\underline{\partial }^{2}g(0,0)=\underline{\partial }^{2}f(\bar{x},\bar{z})\) and \(g^{\uparrow \uparrow }(0,0,h)=f^{\uparrow \uparrow }(\bar{x},\bar{z},h)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eberhard, A.C., Luo, Y. & Liu, S. On partial smoothness, tilt stability and the \({\mathcal {VU}}\)-decomposition. Math. Program. 175, 155–196 (2019). https://doi.org/10.1007/s10107-018-1238-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1238-8

Mathematics Subject Classification

Navigation