Skip to main content
Log in

Approximations and generalized Newton methods

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

A Correction to this article was published on 25 October 2019

This article has been updated

Abstract

We present approaches to (generalized) Newton methods in the framework of generalized equations \(0\in f(x)+M(x)\), where f is a function and M is a multifunction. The Newton steps are defined by approximations \({\hat{f}}\) of f and the solutions of \(0\in {\hat{f}}(x)+M(x)\). We give a unified view of the local convergence analysis of such methods by connecting a certain type of approximation with the desired kind of convergence and different regularity conditions for \(f+M\). Our paper is, on the one hand, thought as a survey of crucial parts of the topic, where we mainly use concepts and results of the monograph (Klatte and Kummer in Nonsmooth equations in optimization: regularity, calculus, methods and applications, Kluwer Academic Publishers, Dordrecht, 2002). On the other hand, we present original results and new features. They concern the extension of convergence results via Newton maps (Klatte and Kummer in Nonsmooth equations in optimization: regularity, calculus, methods and applications, Kluwer Academic Publishers, Dordrecht, 2002; Kummer, in: Oettli, Pallaschke (eds) Advances in optimization, Springer, Berlin, 1992) from equations to generalized equations both for linear and nonlinear approximations \({\hat{f}}\), and relations between semi-smoothness, Newton maps and directional differentiability of f. We give a Kantorovich-type statement, valid for all sequences of Newton iterates under metric regularity, and recall and extend results on multivalued approximations for general inclusions \(0\in F(x)\). Equations with continuous, non-Lipschitzian f are considered, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 25 October 2019

    In Subsection 3.2 of the paper [5]

  • 25 October 2019

    In Subsection 3.2 of the paper [5]

References

  1. Adly, S., Cibulka, R., van Ngai, H.: Newton’s method for solving inclusion using set-valued approximations. SIAM J. Optim. 25, 159–184 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artacho, F.J.A., Belyakov, M., Dontchev, A.L., Lopez, M.: Local convergence of quasi-Newton methods under metric regularity. Comput. Optim. Appl. 58, 225–247 (2014)

  3. Argyros, I.K.: Convergence and Applications of Newton-Type Iterations. Springer, New York (2010)

    Google Scholar 

  4. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  5. Bartle, R.G.: Newton’s method in Banach spaces. Proc. Am. Math. Soc. 5, 827–831 (1955)

    MathSciNet  MATH  Google Scholar 

  6. Broyden, C.G.: A class of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 577–593 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bütikofer, S., Klatte, D.: A nonsmooth Newton method with path search and its use in solving \(C^{1,1}\) programs and semi-infinite problems. SIAM J. Optim. 20, 2381–2412 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cibulka, R., Dontchev, A.L., Geoffroy, M.H.: Inexact Newton methods and Dennis–More theorems for nonsmooth generalized equations. SIAM J. Control Optim. 53, 1003–1019 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cibulka, R., Dontchev, A.L., Preininger, J., Roubal, T., Veliov, V.: Kantorovich-type theorems for generalized equations. Research Report 2015-16, TU Wien (2015)

  10. Clarke, F.H.: On the inverse function theorem. Pac. J. Math. 64, 97–102 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  12. Dontchev, A.L.: Local convergence of the Newton method for generalized equation. C. R. Acad. Sci. Paris Ser. I 322, 327–331 (1996)

    MathSciNet  MATH  Google Scholar 

  13. Dontchev, A.L.: Local Analysis of a Newton-type Method Based on Partial Linearization. Lectures in Applied Mathematics, vol. 32, pp. 295–306 (1996)

  14. Dontchev, A.L., Rockafellar, R.T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 6, 1087–1105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings. A View from Variational Analysis. Springer, Dortrecht (2009). (2nd edition 2014)

    Book  MATH  Google Scholar 

  16. Dontchev, A.L., Rockafellar, R.T.: Newton’s method for generalized equations: a sequential implicit function theorem. Math. Program. Ser. B 123, 139–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Facchinei, F., Pang, J.-S.: Finite-Dimensional Variational Inequalities and Complementary Problems, vol. II. Springer, New York (2003)

    MATH  Google Scholar 

  18. Fusek, P.: Isolated zeros of Lipschitzian metrically regular R\(^n\) functions. Optimization 49, 425–446 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Griewank, A.: The local convergence of Broyden-like methods on Lipschitzian problems in Hilbert spaces. SIAM J. Numer. Anal. 24, 684–705 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. Griewank, A.: On stable piecewise linearization and generalized algorithmic differentiation. Optim. Methods Softw. 28, 1139–1178 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13, 865–888 (2003)

    Article  MATH  Google Scholar 

  22. Hoheisel, T., Kanzow, C., Mordukhovich, B.S., Phan, H.: Generalized Newton’s method based on graphical derivatives. Nonlinear Anal. 75, 1324–1340 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ito, K., Kunisch, K.: Lagrange Multiplier Approach to Variational Problems and Applications. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  24. Izmailov, A.F., Solodov, M.V.: Newton-Type Methods for Optimization and Variational Problems. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  25. Jongen, HTh, Jonker, P., Twilt, F.: Nonlinear Optimization in \(R^n\), I: Morse Theory, Chebychev Approximation. Peter Lang, Bern (1983)

    MATH  Google Scholar 

  26. Jongen, HTh, Jonker, P., Twilt, F.: Nonlinear Optimization in \(R^n\), II: Transversality, Flows, Parametric Aspects. Peter Lang, Bern (1986)

    MATH  Google Scholar 

  27. Josephy, N.H.: Newton’s method for generalized equations and the PIES energy model. Ph.D. Dissertation, Department of Industrial Engineering, University of Wisconsin-Madison (1979)

  28. Kantorovich, L.W., Akilov, G.P.: Funktionalanalysis in normierten Räumen. Akademie, Berlin (1964)

    MATH  Google Scholar 

  29. Klatte, D., Kruger, A., Kummer, B.: From convergence principles to stability and optimality conditions. J. Convex Anal. 19, 1043–1072 (2012)

    MathSciNet  MATH  Google Scholar 

  30. King, A.J., Rockafellar, R.T.: Sensitivity analysis for nonsmooth generalized equations. Math. Program. 55(2), 193–212 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  31. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  32. Klatte, D., Kummer, B.: Strong Lipschitz stability of stationary solutions for nonlinear programs and variational inequalities. SIAM J. Optim. 16, 96–119 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Klatte, D., Kummer, B.: Newton methods for stationary points: an elementary view of regularity conditions and solution schemes. Optimization 56, 441–462 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Klatte, D., Kummer, B.: Aubin property and uniqueness of solutions in cone constrained optimization. Math. Methods Oper. Res. 77, 291–304 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kojima, M., Shindo, S.: Extension of Newton and Quasi-Newton methods to systems of \(PC^1\) equations. J. Oper. Res. Soc. Jpn. 29, 352–374 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kummer, B.: Newton’s method for non-differentiable functions. In: Guddat, J., et al. (eds.) Advances in Mathematical Optimization. Series in Mathematical Research, vol. 45, pp. 114–125. Akademie, Berlin (1988)

    Google Scholar 

  37. Kummer, B.: Lipschitzian inverse functions, directional derivatives and application in \({C}^{1,1}\) optimization. J. Optim. Theory Appl. 70, 559–580 (1991)

    Article  MathSciNet  Google Scholar 

  38. Kummer, B.: Newton’s method based on generalized derivatives for nonsmooth functions: convergence analysis. In: Oettli, W., Pallaschke, D. (eds.) Advances in Optimization, pp. 171–194. Springer, Berlin (1992)

    Chapter  Google Scholar 

  39. Kummer, B.: Approximation of multifunctions and superlinear convergence. In: Durier, R., Michelot, C. (eds.) Recent Developments in Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 429, pp. 243–251. Springer, Berlin (1995)

    Chapter  Google Scholar 

  40. Kummer, B.: Lipschitzian and pseudo-Lipschitzian inverse functions and applications to nonlinear programming. In: Fiacco, A.V. (ed.) Mathematical Programming with Data Perturbations, pp. 201–222. M. Dekker, New York (1997)

    Google Scholar 

  41. Kummer, B.: Newton’s method for continuous functions? script for students. http://www2.mathematik.hu-berlin.de/kummer/scripts/ContNewton.pdf (2012)

  42. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15, 957–972 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mordukhovich, B.S.: Complete characterization of openness, metric regularity and Lipschitzian properties of multifunctions. Trans. Am. Math. Soc. 340, 1–35 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ortega, J.M.: The Newton–Kantorovich theorem. Am. Math. Mon. 75, 658–660 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pang, J.-S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  46. Potra, F.A., Ptak, V.: Nondiscrete Induction and Iterative Processes. Research Notes in Mathematics, vol. 103. Pitman, Boston (1984)

  47. Qi, L., Sun, L.: A nonsmooth version of Newton’s method. Math. Program. 58, 353–367 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rademacher, H.: Ueber partielle und totale Differenzierbarkeit von Funktionen mehrerer Variabeln und ueber die Transformation der Doppelintegrale. Math. Ann. 79, 340–359 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  49. Robinson, S.M.: Extension of Newton’s method to nonlinear functions with values in a cone. Numer. Math. 19, 341–347 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  50. Robinson, S.M.: Generalized equations and their solutions. Part I: Basic theory. Math. Program. Study 10, 128–141 (1979)

    Article  MATH  Google Scholar 

  51. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5, 43–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  52. Robinson, S.M.: Newton’s method for a class of nonsmooth functions. Set Valued Anal. 2, 291–305 (1994). (Preprint 1988)

    Article  MathSciNet  MATH  Google Scholar 

  53. Rockafellar, R.T.: Proto-differentiability of set-valued mappings and its applications in optimization. In: Analyse non linéaire (Perpignan 1987), Ann. Inst. H. Poincaré, Anal. Non Linéaire, vol. 6 (suppl.), pp. 448–482 (1989)

  54. Rockafellar, R.T., Wets, J.-B.: Variational Analysis. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  55. Scholtes, S.: Introduction to Piecewise Differentiable Equations. Springer, New York (2012). (Preprint 1994)

    Book  MATH  Google Scholar 

  56. Shapiro, A.: On concepts of directional differentiability. J. Optim. Theory Appl. 66, 477–487 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  57. Sun, D., Qi, L.: On NCP functions. Comput. Optim. Appl. 13, 201–220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ulbrich, M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13, 805–841 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  59. Ulbrich, M.: Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the referees for their constructive comments that significantly improved the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethard Klatte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klatte, D., Kummer, B. Approximations and generalized Newton methods. Math. Program. 168, 673–716 (2018). https://doi.org/10.1007/s10107-017-1194-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1194-8

Keywords

Mathematics Subject Classification

Navigation