Skip to main content
Log in

Sufficient optimality conditions hold for almost all nonlinear semidefinite programs

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We derive a new genericity result for nonlinear semidefinite programming (NLSDP). Namely, almost all linear perturbations of a given NLSDP are shown to be nondegenerate. Here, nondegeneracy for NLSDP refers to the transversality constraint qualification, strict complementarity and second-order sufficient condition. Due to the presence of the second-order sufficient condition, our result is a nontrivial extension of the corresponding results for linear semidefinite programs (SDP) from Alizadeh et al. (Math Program 77(2, Ser. B):111–128, 1997). The proof of the genericity result makes use of Forsgren’s derivation of optimality conditions for NLSDP in Forsgren (Math Program 88(1, Ser. A):105–128, 2000). Due to the latter approach, the positive semidefiniteness of a symmetric matrix G(x), depending continuously on x, is locally equivalent to the fact that a certain Schur complement S(x) of G(x) is positive semidefinite. This yields a reduced NLSDP by considering the new semidefinite constraint \(S(x) \succeq 0\), instead of \(G(x) \succeq 0\). While deriving optimality conditions for the reduced NLSDP, the well-known and often mentioned “H-term” in the second-order sufficient condition vanishes. This allows us to access the proof of the genericity result for NLSDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Robinson’s constraint qualification, a generalization of Mangasarian–Fromovitz constraint qualification (MFCQ), and strict complementarity.

  2. The H-term is a special case of the “\(\sigma \)-term” from [7].

  3. W.r.t. the so-called strong \(C^k\)-topology on the space of involved functions; see [21] for details.

References

  1. Achtziger, W., Kočvara, M.: Structural topology optimization with eigenvalues. SIAM J. Optim. 18(4), 1129–1164 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alizadeh, F., Haeberly, J.-P.A., Overton, M.L.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77(2, Ser. B), 111–128 (1997)

    MathSciNet  MATH  Google Scholar 

  3. Allende, G.B., Still, G.: Solving bilevel programs with the KKT-approach. Math. Program. 138(1–2), 309–332 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Anand, C.K., Sotirov, R., Terlaky, T., Zheng, Z.: Magnetic resonance tissue quantification using optimal bssfp pulse-sequence design. Optim. Eng. 8(2), 215–238 (2007)

    Article  MATH  Google Scholar 

  5. Anjos, M.F., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization. International Series in Operations Research & Management Science, vol. 166. Springer, Berlin (2012)

    Google Scholar 

  6. Bolte, J., Daniilidis, A., Lewis, A.S.: Generic optimality conditions for semialgebraic convex programs. Math. Oper. Res. 36(1), 55–70 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)

    Book  MATH  Google Scholar 

  8. Boyd, S., Vandenberghe, L.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. de Klerk, E.: Aspects of Semidefinite Programming. Interior Point Algorithms and Selected Applications. Applied Optimization, vol. 65. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  10. de Klerk, E.: Exploiting special structure in semidefinite programming: a survey of theory and applications. Eur. J. Operat. Res. 201(1), 1–10 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Diehl, M., Jarre, F., Vogelbusch, C.H.: Loss of superlinear convergence for an SQP-type method with conic constraints. SIAM J. Optim. 16(4), 1201–1210 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dorsch, D.: Stratified Optimality Theory: A Tool for the Theoretical Justification of Assumptions in Finite-Dimensional Optimization. Berichte aus der Mathematik. Shaker Verlag, Aachen (2014)

    MATH  Google Scholar 

  13. Dorsch, D., Shikhman, V., Stein, O.: MPVC: Critical point theory. J. Glob. Optim. 52(3), 591–605 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Forsgren, A.: Optimality conditions for nonconvex semidefinite programming. Math. Program. 88(1, Ser. A), 105–128 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Freund, R.W., Jarre, F., Vogelbusch, C.H.: Nonlinear semidefinite programming: sensitivity, convergence, and an application in passive reduced-order modeling. Math. Program. 109(2–3 B), 581–611 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haslinger, J., Kovčvara, M., Leugering, G., Stingl, M.: Multidisciplinary free material optimization. SIAM J. Appl. Math. 70(7), 2709–2728 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hirsch, M.W.: Differential topology. Springer, New York, (1976). Graduate Texts in Mathematics, No. 33

  18. Jargalsaikhan, B.: Linear conic programming: genericity and stability, University of Groningen, Groningen (2015)

  19. Jarre, F.: Elementary optimality conditions for Nonlinear SDP. Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research & Management Science 166(2), 455–470 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jongen, HTh, Jonker, P., Triesch, E.: Optimization Theory. Kluwer, Boston (2004)

    MATH  Google Scholar 

  21. Jongen, HTh, Jonker, P., Twilt, F.: Nonlinear Optimization in Finite Dimensions. Kluwer, Dordrecht (2000)

    MATH  Google Scholar 

  22. Jongen, HTh, Shikhman, V.: Bilevel optimization: on the structure of the feasible set. Math. Program. 136(1), 65–89 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kanno, Y., Takewaki, I.: Sequential semidefinite program for maximum robustness design of structures under load uncertainty. J. Optim. Theory Appl. 130(2), 265–287 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kočvara, M., Stingl, M.: Solving nonconvex SDP problems of structural optimization with stability control. Optim. Methods Softw. 19(5), 595–609 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kočvara, M., Stingl, M.: Free material optimization for stress constraints. Struct. Multidiscip. Optim. 33(4–5), 323–335 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kočvara, M., Stingl, M.: Solving stress constrained problems in topology and material optimization. Struct. Multidiscip. Optim. 46(1), 1–15 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kočvara, M., Stingl, M., Zowe, J.: Free material optimization: recent progress. Optimization 57(1), 79–100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nemirovskii, A., Nesterov, Y.: Interior-point polynomial algorithms in convex programming. SIAM Stud. Appl. Math. 13, SIAM Philadelphia, (1994)

  29. Robinson, S.M.: First order conditions for general nonlinear optimization. SIAM J. Appl. Math. 30(4), 597–607 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shapiro, A.: First and second order analysis of nonlinear semidefinite programs. Math. Program. 77(2, Ser. B), 301–320 (1997)

    MathSciNet  MATH  Google Scholar 

  31. Stingl, M., Kočvara, M., Leugering, G.: Free material optimization with fundamental eigenfrequency constraints. SIAM J. Optim. 20(1), 525–547 (2009)

    MathSciNet  MATH  Google Scholar 

  32. Stingl, M., Kočvara, M., Leugering, G.: A sequential convex semidefinite programming algorithm with an application to multiple-load free material optimization. SIAM J. Optim. 20(1), 130–155 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Todd, M.J.: Semidefinite optimization. Acta Numer. 10, 515–560 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wolkowitz, H., Saigal, R., Vandenberghe, L. (eds). Handbook of Semidefinite Programming: Theory, Algorithms and Applications. Kluwer’s International Series in Operations Research and Management Science. Kluwer Academic Publishers, Boston, MA (2000)

Download references

Acknowledgments

The authors would like to thank both anonymous referees, the associate editor and the co-editor for their valuable remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Gómez.

Additional information

This work was supported by Conicyt Chile under the Grant Fondecyt Nr. 1120028.

Appendix

Appendix

Appendix is devoted to the proofs of Lemmata 4 and 5.

Proof of Lemma 4

First, we derive a representation of DS(x) in terms of DG(x). Note that for x close to \(\bar{x}\) and an arbitrary \(h \in \mathbb {R}^n\) it holds:

$$\begin{aligned} D A^{-1} (x) [h]=- A(x)^{-1} (DA(x)[h]) A (x)^{-1}. \end{aligned}$$

Thus, using the formula (13) for S(x), we calculate

$$\begin{aligned} DS( x)[h] = W( x)^\top (DG( x)[h]) W( x), \quad W(x):=\left( \begin{array}{c} -A ( x)^{-1} B ( x) \\ {{\mathrm{Id}}}\end{array} \right) . \end{aligned}$$
(28)

Now, let \(\omega \in \Lambda ^R\) be given, and let \(\Omega := \varOmega (\omega )\). One easily verifies that \(\Omega = W \omega W^\top \), where \(W := W(\bar{x})\). Since the columns of W span the kernel of \(G(\bar{x})\), we have

$$\begin{aligned} \Omega \bullet G(\bar{x}) = \text {tr} [ G(\bar{x}) W \omega W^\top ] = 0. \end{aligned}$$

The application of basic symmetry properties of the trace yields

$$\begin{aligned} \omega \bullet DS = \text {tr}\left[ \omega W^\top (DG) W \right] = \text {tr}\left[ W \omega W^\top DG \right] = (W \omega W^\top ) \bullet DG, \end{aligned}$$
(29)

where we omit the argument \(\bar{x}\) in the involved matrices. This implies

$$\begin{aligned} D_x L (\bar{x} , \Omega ) = D_x L^R (\bar{x} , \omega ) = 0, \end{aligned}$$

and, hence, \(\Omega \in \Lambda \).

Now, we show that for each \(\Omega \in \Lambda \) there exists a unique \(\omega \in \Lambda ^R\) with \(\Omega = W \omega W^\top \). The uniqueness follows directly from the fact that the columns of W are linearly independent. Further, we set

$$\begin{aligned} \omega := Q (WQ)^\top \Omega (W Q) Q^\top , \end{aligned}$$

where Q is a matrix with the property that the columns of W Q are orthonormal and span the same linear subspace as those of W. First, we show that \(W \omega W^\top \) is equal to \(\Omega \). Indeed, since the columns of WQ form an orthogonal basis of the kernel of G(x) and \(\Omega \bullet G(x) = 0\), there exists a diagonal matrix \(\Omega _\Delta \) such that \(\Omega = (WQ) \Omega _\Delta (WQ)^\top \). We calculate:

$$\begin{aligned} \begin{array}{rcl} W \omega W^\top &{}=&{} W ( Q (WQ)^\top \Omega (W Q) Q^\top ) W^\top \\ &{}=&{} W ( Q (WQ)^\top (WQ) \Omega _\Delta (WQ)^\top (W Q) Q^\top ) W^\top \\ &{}=&{}W ( Q \Omega _\Delta Q^\top ) W^\top = (W Q) \Omega _\Delta (WQ)^\top =\Omega . \end{array} \end{aligned}$$

It remains to show that \(\omega \) is an element of \(\Lambda ^R\). Since \(\Omega \) is positive semidefinite, also \(\omega \) is. Analogously as in (29), one shows that \(D_x L^R (\bar{x},\omega ) = D_x L (\bar{x}, \Omega ) = 0\). The fact that \(\omega \bullet S(\bar{x}) = 0\) follows from \(S(\bar{x}) = W^\top G(\bar{x}) W\). Overall, we conclude that \(\omega \in \Lambda ^R\). \(\square \)

Proof of Lemma 5 (a)

By definition, the transversality constraint qualification means that \({{\mathrm{Im}}}DG(\bar{x}) + T_{G(\bar{x})}\mathbb {S}^m_r\) is equal to \(\mathbb {S}^m\). This is equivalent to the fact that the orthogonal complement \(( {{\mathrm{Im}}}DG(\bar{x}) + T_{G(\bar{x})} \mathbb {S}^m_r )^\perp \) – w.r.t. the trace inner product “\(\bullet \)” – is equal to \(\{ 0 \}\). Since the orthogonal complement is given by the intersection \(({{\mathrm{Im}}}DG(\bar{x}))^\perp \cap (T_{G(\bar{x})} \mathbb {S}^m_r )^\perp \), transversality constraint qualification is equivalent to \(({{\mathrm{Im}}}DG(\bar{x}))^\perp \cap (T_{G(\bar{x})} \mathbb {S}^m_r )^\perp = \{0\}\). In view of \(({{\mathrm{Im}}}DG(\bar{x}))^\perp = {{\mathrm{Ker}}}DG(\bar{x})^*\) and \((T_{G(\bar{x})}\mathbb {S}^{m}_r)^\perp = {{\mathrm{Im}}}D\varphi (G(\bar{x}))^*\), where \(\varphi : G \mapsto C - B^\top A^{-1} B\) (cf. (11)), the transversality constraint qualification holds if and only if

$$\begin{aligned} {{\mathrm{Ker}}}DG(\bar{x})^* \cap {{\mathrm{Im}}}D\varphi (G(\bar{x}))^* = \{0\}. \end{aligned}$$
(30)

On the other hand, \(DS(\bar{x})\) is regular if and only if

$$\begin{aligned} {{\mathrm{Ker}}}DS(\bar{x})^* = {{\mathrm{Ker}}}\left[ DG(\bar{x})^* \cdot D\varphi (G(\bar{x}))^* \right] = \{0\}. \end{aligned}$$

The latter is equivalent to (30). \(\square \)

Proof of Lemma 5 (b)

The rank of \(G(\bar{x})\) is equal to r. Therefore, \({{\mathrm{rank}}}G(\bar{x}) + {{\mathrm{rank}}}\Omega = m\) if and only if the rank of \(\Omega \) equals \(m-r\). Now, the assertion follows directly from the fact that \(\Omega \) is given by \(W \omega W^\top \). \(\square \)

Proof of Lemma 5 (c)

Since the kernel of \(S(\bar{x}) = 0 \in \mathbb {S}^{m-r}\) is the whole \(\mathbb {R}^{m-r}\), it holds:

$$\begin{aligned} T^R (\bar{x}) = \{ h \in \mathbb {R}^n \mid DS(\bar{x})[h] = 0\}. \end{aligned}$$

Recall from (28) that for all \(h \in \mathbb {R}^n\) and x close to \(\bar{x}\):

$$\begin{aligned} DS( x) [h] = W( x)^\top (DG( x) [h]) W( x), \quad W(x):=\left( \begin{array}{c} -A ( x)^{-1} B ( x) \\ {{\mathrm{Id}}}\end{array} \right) . \end{aligned}$$
(31)

Further, from (10) we have

$$\begin{aligned} T(\bar{x}) = \{h \in \mathbb {R}^n \mid E^\top DG(\bar{x})[h] E = 0\}, \end{aligned}$$

where the columns of E form a basis of the kernel of \(DG(\bar{x})\). Note that the columns of \(W(\bar{x})\) form also a basis of the kernel of \(DG(\bar{x})\). Then, in view of (31), \(T^R (\bar{x})=T(\bar{x})\).

Now, we show that for all \(h \in T (\bar{x})\) it holds:

$$\begin{aligned} h^\top \left( D^2_{xx} L^{R} (\bar{x} , \omega ) \right) h = h^\top \left( D^2_{xx} L(\bar{x} , \Omega ) + H(\bar{x}, \Omega ) \right) h. \end{aligned}$$

We calculate:

$$\begin{aligned} h^\top \left( D^2_{xx} L^R (\bar{x} , \omega ) \right) h = h^\top D^2 f(\bar{x}) h - \omega \bullet D^2 S(\bar{x})[h,h]. \end{aligned}$$

We proceed by calculating the term \(D^2 S(\bar{x}) [h,h]\) using the formula in (31):

$$\begin{aligned} \begin{array}{rcl} D^2S(\bar{x})[h,h]&{}=&{}(D^2W(\bar{x})[h,h])^\top G(\bar{x})W(\bar{x})+(W(\bar{x})[h])^\top (DG(\bar{x})[h])W(\bar{x})\\ &{}&{} +\,(W(\bar{x})[h])^\top G(\bar{x})(DW(\bar{x})[h]) + (DW(\bar{x})[h])^\top (DG(\bar{x})[h])W(\bar{x}) \\ &{}&{} +\, W(\bar{x})^\top (D^2G(\bar{x})[h,h])W(\bar{x})+W(\bar{x})^\top (DG(\bar{x})[h])(DW(\bar{x})[h])\\ &{}&{}+ \,(DW(\bar{x})[h])^\top G(\bar{x})(DW(\bar{x})[h])\\ &{}&{}+\,W(\bar{x})^\top (DG(\bar{x})[h])(DW(\bar{x})[h])\\ &{}&{}+\,W(\bar{x})^\top G(\bar{x})(D^2W(\bar{x})[h,h]). \end{array} \end{aligned}$$

A straightforward matrix multiplication shows that if \(S(x) = 0\) (for x close to \(\bar{x}\)), then also \(G(x)W(x) = 0\). Hence, \(D \left( G W \right) (\bar{x})[h]=0\) for any direction \(h \in T(\bar{x})\), i.e.,

$$\begin{aligned} (DG(\bar{x})[h])W(\bar{x})=-G(\bar{x})(DW(\bar{x})[h]). \end{aligned}$$
(32)

Using this and \(G(\bar{x}) W(\bar{x})=0\), the formula for \(D^2 S(\bar{x})[h,h]\) reduces to

$$\begin{aligned} D^2 S(\bar{x})[h,h] = W(\bar{x})^\top (D^2G(\bar{x})[h,h])W(\bar{x}) - 2 (DW(\bar{x})[h])^\top G(\bar{x})(DW(\bar{x})[h]). \end{aligned}$$

Using this, we have the following:

$$\begin{aligned} \begin{array}{rcl} h^\top \left( D^2_{xx} L^R (\bar{x} , \omega ) \right) h &{} = &{} h^\top D^2 f(\bar{x}) h - \omega \bullet W(\bar{x})^\top (D^2G(\bar{x})[h,h])W(\bar{x}) \\ &{}&{} + \omega \bullet 2 (DW(\bar{x})[h])^\top G(\bar{x})(DW(\bar{x})[h]),\end{array} \end{aligned}$$

which by the properties of the trace goes to

$$\begin{aligned} \begin{array}{rcl} h^\top \left( D^2_{xx} L^R (\bar{x} , \omega ) \right) h &{}=&{} h^\top D^2 f(\bar{x})h-(W(\bar{x}) \omega W(\bar{x})^\top )\bullet (D^2G(\bar{x})[h,h]) \\ &{}&{}+ \omega \bullet 2 (DW(\bar{x})[h])^\top G(\bar{x})(DW(\bar{x})[h]), \end{array} \end{aligned}$$

and finally, using \(W(\bar{x}) \omega W(\bar{x})^\top = \Omega \), to the expression

$$\begin{aligned} \begin{array}{rcl} h^\top \left( D^2_{xx} L^R (\bar{x} , \omega ) \right) h &{}=&{} h^\top D^2 f(\bar{x})h-{\Omega }\bullet (D^2G(\bar{x})[h,h]) \\ &{} &{} +\, 2 \omega \bullet (DW(\bar{x})[h])^\top G(\bar{x})(DW(\bar{x})[h]) \\ &{}=&{} h^\top D^2_{xx} L(\bar{x},\Omega ) h +\, 2 \omega \bullet (DW(\bar{x})[h])^\top G(\bar{x})(DW(\bar{x})[h]). \end{array} \end{aligned}$$

By definition of the Moore-Penrose pseudo inverse, we have \(G(\bar{x}) G(\bar{x})^\dag G(\bar{x})=G(\bar{x})\). Thus, we obtain

$$\begin{aligned} \begin{array}{rcl} h^\top \left( D^2_{xx} L^R (\bar{x} , \omega ) \right) h &{}=&{} h^\top D^2_{xx} L(\bar{x},\Omega ) h \\ &{}&{} +\, 2 \omega \bullet (DW(\bar{x})[h])^\top G(\bar{x})G(\bar{x})^{\dag }G(\bar{x})(DW(\bar{x})[h])\\ &{}=&{}h^\top D^2_{xx} L(\bar{x},\Omega ) h \\ &{}&{}+\, 2 \omega \bullet (G(\bar{x})DW(\bar{x})[h])^\top G(\bar{x})^{\dag }(G(\bar{x})DW(\bar{x})[h]). \end{array} \end{aligned}$$

Taking again into account (32), it follows that

$$\begin{aligned} \begin{array}{rcl} h^\top \left( D^2_{xx} L^R (\bar{x} , \omega ) \right) h &{}=&{} h^\top D^2_{xx} L(\bar{x},\Omega ) h \\ &{}&{}+\, 2 \omega \bullet W(\bar{x})^\top (DG(\bar{x})[h])G(\bar{x})^{\dag }(DG(\bar{x})[h])W(\bar{x})\\ &{}=&{}h^\top D^2_{xx} L(\bar{x},\Omega ) h \\ &{}&{}+\, 2(W(\bar{x}) \omega W(\bar{x})^\top )\bullet (DG(\bar{x})[h])G(\bar{x})^{\dag }(DG(\bar{x})[h])\\ &{}=&{}h^\top D^2_{xx} L(\bar{x},\Omega ) h \\ &{}&{}+\, 2{\Omega }\bullet (DG(\bar{x})[h])G(\bar{x})^{\dag }(DG(\bar{x})[h]). \end{array} \end{aligned}$$

Recalling the definition of \(H(\bar{x}, \Omega )\) in (9), we proved that for all \(h \in T (\bar{x})\):

$$\begin{aligned} h^\top \left( D^2_{xx} L^R (\bar{x} , \omega ) \right) h = h^\top \left( D^2_{xx} L(\bar{x},\Omega ) + H(\bar{x},{\Omega }) \right) h. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dorsch, D., Gómez, W. & Shikhman, V. Sufficient optimality conditions hold for almost all nonlinear semidefinite programs. Math. Program. 158, 77–97 (2016). https://doi.org/10.1007/s10107-015-0915-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0915-0

Keywords

Mathematics Subject Classification

Navigation