Skip to main content
Log in

Submodular maximization meets streaming: matchings, matroids, and more

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study the problem of finding a maximum matching in a graph given by an input stream listing its edges in some arbitrary order, where the quantity to be maximized is given by a monotone submodular function on subsets of edges. This problem, which we call maximum submodular-function matching (MSM), is a natural generalization of maximum weight matching (MWM), which is in turn a generalization of maximum cardinality matching. We give two incomparable algorithms for this problem with space usage falling in the semi-streaming range—they store only \(O(n)\) edges, using \(O(n\log n)\) working memory—that achieve approximation ratios of 7.75 in a single pass and \((3+\varepsilon )\) in \(O(\varepsilon ^{-3})\) passes respectively. The operations of these algorithms mimic those of Zelke’s and McGregor’s respective algorithms for MWM; the novelty lies in the analysis for the MSM setting. In fact we identify a general framework for MWM algorithms that allows this kind of adaptation to the broader setting of MSM. Our framework is not specific to matchings. Rather, we identify a general pattern for algorithms that maximize linear weight functions over “independent sets” and prove that such algorithms can be adapted to maximize a submodular function. The notion of independence here is very general; in particular, appealing to known weight-maximization algorithms, we obtain results for submodular maximization over hypermatchings in hypergraphs as well as independent sets in the intersection of multiple matroids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Throughout the paper, we adopt the convention that edge weights in an MWM instance—and analogously, \(f\)-values of singletons in an MSM instance—do not grow with \(n\); this ensures that each weight we store in our algorithms takes up \(O(1)\) storage.

  2. This subtlety appears to have been missed in McGregor’s analysis [2] and it creates a gap in his argument. Using a pretend stream order as we do in this work fixes that gap.

  3. Feigenbaum et al. [1] and McGregor [2] used the evocative term “trail of the dead” for this concept.

References

  1. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems in a semi-streaming model. Theor. Comput. Sci. 348(2), 207 (2005). doi:10.1016/j.tcs.2005.09.013

    Article  MATH  MathSciNet  Google Scholar 

  2. McGregor, A.: Proceedings of the 8th International Workshop on Approximation Algorithms for Combinatorial Optimization Problems, pp. 170–181. Springer, Berlin, Heidelberg (2005). APPROX’05/RANDOM’05. doi:10.1007/11538462_15

  3. Zelke, M.: Proceedings of the 25th International Symposium on Theoretical Aspects of Computer Science, pp. 669–680 (2008). STACS ’08

  4. Epstein, L., Levin, A., Mestre, J., Segev, D.: Improved approximation guarantees for weighted matching in the semi-streaming model. SIAM J. Discrete Math. 25(3), 1251 (2011). doi:10.1137/100801901

    Article  MATH  MathSciNet  Google Scholar 

  5. Goel, A., Kapralov, M., Khanna, S.: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 468–485. SIAM (2012). SODA ’12. http://dl.acm.org/citation.cfm?id=2095116.2095157

  6. Kapralov, M.: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM (2013). SODA ’13

  7. Feldman, M., Naor, J., Schwartz, R., Ward, J.: Proceedings of the 19th Annual European Symposium on Algorithms, pp. 784–798. Springer, Berlin, Heidelberg (2011). ESA’11 http://dl.acm.org/citation.cfm?id=2040572.2040658

  8. Edmonds, J.: Can. J. Math. 17, 449 (1965). www.cs.berkeley.edu/christos/classics/edmonds.ps

  9. Galil, Z.: Efficient algorithms for finding maximum matchings in graphs. ACM Comput. Surv. 18(1), 23 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Badanidiyuru Varadaraja, A.: Proceedings of the 38th International Colloquium Conference on Automata, Languages and Programming, volume Part I, pp. 379–390. Springer, Berlin, Heidelberg (2011). ICALP’11. http://arxiv.org/abs/1009.5037

  11. Ahn, K.J., Guha, S.: In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Automata, Languages and Programming, Lecture Notes in Computer Science, vol. 6756, pp. 526–538. Springer, Berlin, Heidelberg (2011). doi:10.1007/978-3-642-22012-8_42

  12. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: Proceedings of the 22nd Annual ACM Symposium on the Theory of Computing, pp. 352–358 (1990)

  13. Nemhauser, G., Wolsey, L., Fisher, M.: An analysis of approximations for maximizing submodular set functions—I. Math. Program. 14(1), 265 (1978). doi:10.1007/BF01588971

    Article  MATH  MathSciNet  Google Scholar 

  14. Fisher, M., Nemhauser, G., Wolsey, L.: In: Balinski, M., Hoffman, A. (eds.) Polyhedral Combinatorics, Mathematical Programming Studies, vol. 8, pp. 73–87. Springer, Berlin Heidelberg (1978). doi:10.1007/BFb0121195

  15. Jenkyns, T.A.: Proceedings of the 7th South Eastern Conference on Combinatorics, Graph Theory and Computing, pp. 341–350 (1976)

  16. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740 (2011). doi:10.1137/080733991

    Article  MATH  MathSciNet  Google Scholar 

  17. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Proceedings of the 41st Annual ACM Symposium on the Theory of Computing, pp. 323–332. ACM, Bethesda, MD, USA (2009). STOC ’09. doi:10.1145/1536414.1536459

  18. Lee, J., Sviridenko, M., Vondrák, J.: Submodular maximization over multiple matroids via generalized exchange properties. Math. Oper. Res. 35(4), 795 (2010). doi:10.1287/moor.1100.0463

    Article  MATH  MathSciNet  Google Scholar 

  19. Badanidiyuru, A., Vondrák, J.: Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM (2014). SODA ’14 to appear

  20. Lin, H., Bilmes, J.: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers, volume 2, pp. 170–175. Association for Computational Linguistics, Stroudsburg, PA, USA (2011). HLT ’11. http://dl.acm.org/citation.cfm?id=2002736.2002773

  21. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a submodular set function. Math. Oper. Res. 3(3), 177 (1978). http://www.jstor.org/stable/3689488

Download references

Acknowledgments

This work was funded in part by NSF, under Award #1217375.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagar Kale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, A., Kale, S. Submodular maximization meets streaming: matchings, matroids, and more. Math. Program. 154, 225–247 (2015). https://doi.org/10.1007/s10107-015-0900-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0900-7

Mathematics Subject Classification

Navigation