Skip to main content
Log in

Worst-case results for positive semidefinite rank

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

We present various worst-case results on the positive semidefinite (psd) rank of a nonnegative matrix, primarily in the context of polytopes. We prove that the psd rank of a generic \(n\)-dimensional polytope with \(v\) vertices is at least \((nv)^{\frac{1}{4}}\) improving on previous lower bounds. For polygons with \(v\) vertices, we show that psd rank cannot exceed \(4 \left\lceil v/6 \right\rceil \) which in turn shows that the psd rank of a \(p \times q\) matrix of rank three is at most \(4\left\lceil \min \{p,q\}/6 \right\rceil \). In general, a nonnegative matrix of rank \({k+1 \atopwithdelims ()2}\) has psd rank at least \(k\) and we pose the problem of deciding whether the psd rank is exactly \(k\). Using geometry and bounds on quantifier elimination, we show that this decision can be made in polynomial time when \(k\) is fixed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bochnak, J., Coste, M., Roy, M.: Real Algebraic Geometry. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  2. Braun, G., Fiorini, S., Pokutta, S., Steurer, D.: Approximation limits of linear programs (beyond hierarchies). In: Proceedings of FOCS (2012)

  3. Briët, J., Dadush, D., Pokutta, S.: On the existence of \(0/1\) polytopes with high semidefinite extension complexity. Math. Program. Ser. B (to appear)

  4. Cohen, J.E., Rothblum, U.G.: Nonnegative ranks, decompositions, and factorizations of nonnegative matrices. Linear Algebra Its Appl. 190, 149–168 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fawzi, H., Parrilo, P.A.: Lower bounds to nonnegative rank via nonnegative nuclear norms. Math. Progam. Ser. B (to appear)

  6. Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.O.: Combinatorial bounds on nonnegative rank and extended formulations. Discret. Math. 313(1), 67–83 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In: Proceedings of STOC (2012)

  8. Fiorini, S., Rothvoss, T., Tiwary, H.: Extended formulations for polygons. Discret. Comput. Geom. 48(3), 658–668 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gillis, N., Glineur, F.: On the geometric interpretation of the nonnegative rank. Linear Algebra Its Appl. 437(11), 2685–2712 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gouveia, J., Parrilo, P.A., Thomas, R.R.: Lifts of convex sets and cone factorizations. Math. Oper. Res. 38, 248–264 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gouveia, J., Robinson, R.Z., Thomas, R.R.: Polytopes of minimum positive semidefinite rank. Discret. Comput. Geom. 50(3), 679–699 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hungerford,T.: Algebra. Holt, Rinehart, and Winston, New York (1974)

  13. Lee T., Theis, D.O.: Support based lower bounds for the positive semidefinite rank of a nonnegative matrix. Linear Algebra Appl. (to appear)

  14. Moitra, A.: An almost optimal algorithm for computing nonnegative rank. In: Proceedings of the SODA (2013)

  15. Pashkovich, K.: Extended Formulations for Combinatorial Polytopes. PhD thesis, Magdeburg Universität (2012)

  16. Renegar, J.: On the computational complexity and geometry of the first-order theory of the reals. J. Symb. Comp. 13(3), 255–352 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shitov, Y.: An upper bound for nonnegative rank. J. Comb. Theory Ser. A 122, 126–132 (2014)

    Article  MathSciNet  Google Scholar 

  18. Vavasis, S.: On the complexity of nonnegative matrix factorization. SIAM J. Optim. 20(3), 1364–1377 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wolkowicz, H., Saigal, R., Vandenberghe, L.: Handbook of Semidefinite Programming. Kluwer, Boston (2000)

    Book  Google Scholar 

  20. Yannakakis, M.: Expressing combinatorial optimization problems by linear programs. J. Comput. Syst. Sci. 43(3), 441–466 (1991)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Z. Robinson.

Additional information

Gouveia was supported by by the Centre for Mathematics at the University of Coimbra and Fundacão para a Ciência e a Tecnologia, through the European program COMPETE/FEDER, Robinson by the U.S. National Science Foundation Graduate Research Fellowship under Grant No. DGE-0718124, and Thomas by the U.S. National Science Foundation Grant DMS-1115293.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gouveia, J., Robinson, R.Z. & Thomas, R.R. Worst-case results for positive semidefinite rank. Math. Program. 153, 201–212 (2015). https://doi.org/10.1007/s10107-015-0867-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0867-4

Mathematics Subject Classification

Navigation