Skip to main content
Log in

Semidefinite programming and eigenvalue bounds for the graph partition problem

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

The graph partition problem is the problem of partitioning the vertex set of a graph into a fixed number of sets of given sizes such that the sum of weights of edges joining different sets is optimized. In this paper we simplify a known matrix-lifting semidefinite programming relaxation of the graph partition problem for several classes of graphs and also show how to aggregate additional triangle and independent set constraints for graphs with symmetry. We present an eigenvalue bound for the graph partition problem of a strongly regular graph, extending a similar result for the equipartition problem. We also derive a linear programming bound of the graph partition problem for certain Johnson and Kneser graphs. Using what we call the Laplacian algebra of a graph, we derive an eigenvalue bound for the graph partition problem that is the first known closed form bound that is applicable to any graph, thereby extending a well-known result in spectral graph theory. Finally, we strengthen a known semidefinite programming relaxation of a specific quadratic assignment problem and the above-mentioned matrix-lifting semidefinite programming relaxation by adding two constraints that correspond to assigning two vertices of the graph to different parts of the partition. This strengthening performs well on highly symmetric graphs when other relaxations provide weak or trivial bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, F.: Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5, 13–51 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  2. Armbruster, M., Helmberg, C., Fügenschuh, M., Martin, A.: LP and SDP branch-and-cut algorithms for the minimum graph bisection problem: a computational comparison. Math. Program. Comput. 4(3), 275–306 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Biswas, R., Hendrickson, B., Karypis, G.: Graph partitioning and parallel computing. Parallel Comput. 26(12), 1515–1517 (2000)

    Article  MATH  Google Scholar 

  4. Brouwer, A.E.: Chang graphs. http://www.win.tue.nl/~aeb/graphs/Chang.html

  5. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  6. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs, Springer, New York. http://homepages.cwi.nl/~aeb/math/ipm/ (2012)

  7. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. Preprint 2013. arXiv:1311.3144

  8. Chang, L.C.: The uniqueness and nonuniqueness of triangular association schemes. Sci. Rec. 3, 604–613 (1959)

  9. Dai, W., Kuh, E.: Simultaneous floor planning and global routing for hierarchical building-block layout. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 6(5), 828–837 (1987)

    Article  Google Scholar 

  10. De Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem. Math. Program. Ser. A 122(2), 225–246 (2010)

    Article  MATH  Google Scholar 

  11. De Klerk, E.: Exploiting special structure in semidefinite programming: a survey of theory and applications. EJOR 201(1), 1–20 (2010)

    Article  MATH  Google Scholar 

  12. De Klerk, E., Pasechnik, D.V., Sotirov, R., Dobre, C.: On semidefinite programming relaxations of maximum k-section. Math. Program. Ser. B 136(2), 253–278 (2012)

    Article  MATH  Google Scholar 

  13. De Klerk, E., Dobre, C., Pasechnik, D.V.: Numerical block diagonalization of matrix \(*\)-algebras with application to semidefinite programming. Math. Program. Ser. B 129(1), 91–111 (2011)

    Article  MATH  Google Scholar 

  14. De Klerk, E., Sotirov, R.: Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry. Math. Program. Ser. A 133(1), 75–91 (2012)

    Article  MATH  Google Scholar 

  15. De Klerk, E., de Oliveira Filho, F.M., Pasechnik, D.V.: Relaxations of combinatorial problems via association schemes. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications, pp. 171–200. Springer, New York (2012)

  16. De Klerk, E., Nagy, M., Sotirov, R., Truetsch, U.: Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems. EJOR 233(3), 488–499 (2014)

    Article  Google Scholar 

  17. Delsarte, P.: An agebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10 (1973)

  18. Donath, W.E., Hoffman, A.J.: Lower bounds for the partitioning of graphs. IBM J. Res. Dev. 17, 420–425 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  19. Falkner, J., Rendl, F., Wolkowicz, H.: A computational study of graph partitioning. Math. Program. 66, 211–239 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: Proceedings of the 19th Design Automation Conference, pp. 175–181 (1982)

  21. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sum of squares. J. Pure Appl. Algebra 192, 95–128 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Goemans, M.X., Rendl, F.: Semidefinite programs and association schemes. Computing 63(4), 331–340 (1999)

  24. Haemers, W.H., Spence, E.: The pseudo-geometric graphs for generalised quadrangles of order \((3, t)\). Eur. J. Combin. 22(6), 839–845 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hendrickson, B., Kolda, T.G.: Partitioning rectangular and structurally nonsymmetric sparse matrices for parallel processing. SIAM J. Sci. Comput. 21(6), 2048–2072 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Higman, D.G., Sims, C.: A simple group of order 44,352,000. Math. Z. 105, 110–113 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  27. Juvan, M., Mohar, B.: Optimal linear labelings and eigenvalues of graphs. Discrete Appl. Math. 36, 153–168 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Karisch, S.E., Rendl, F., Clausen, J.: Solving graph bisection problems with semidefinite programming. INFORMS J. Comput. 12, 177–191 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Karisch, S.E., Rendl, F.: Semidefinite programming and graph equipartition. In: Pardalos, P.M., Wolkowicz, H. (eds.) Topics in Semidefinite and Interior-Point Methods, vol. 18, pp. 77–96. American Mathematical Society, Providence (1998)

    Google Scholar 

  30. Karloff, H.: How good is the Goemans–Williamson max cut algorithm? SIAM J. Comput. 29(1), 336–350 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Chicester (1990)

    MATH  Google Scholar 

  32. Löfberg, J.: YALMIP: a toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference, Taipei, Taiwan, pp. 284–289. http://users.isy.liu.se/johanl/yalmip/ (2004)

  33. Mohar, B., Poljak, S.: Eigenvalues in combinatorial optimization. In: Brualdi, R.A., Friedland, S., Klee, V. (eds.) Combinatorial and Graph-Theoretical Problems in Linear Algebra. IMA Volumes in Mathematics and Its Applications, vol. 50, pp. 107–151. Springer, Berlin (1993)

    Google Scholar 

  34. Pong, T.K., Sun, H., Wang, N., Wolkowicz, H.: Eigenvalue, quadratic programming, and semidefinite programming bounds for vertex separators. Technical report, University of Waterloo, Canada (2014)

  35. Povh, J., Rendl, F.: Copositive and semidefinite relaxations of the quadratic assignment problem. Discrete Optim. 6(3), 231–241 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  36. Rendl, F., Sotirov, R.: Bounds for the quadratic assignment problem using the bundle method. Math. Program. Ser. B 109(2–3), 505–524 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Rendl, F., Wolkowicz, H.: A projection technique for partitioning nodes of a graph. Ann. Oper. Res. 58, 155–179 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  38. Rendl, F., Lisser, A., Piacentini, M.: Bandwidth, vertex separators and eigenvalue optimization. In: Bezdek, K., et al. (eds.) Discrete Geometry and Optimization, volume 69 of Fields Institute for Research in Mathematical Sciences, Communication Series, pp. 249–263. Springer, Berlin (2013)

  39. Rinaldi, G.: Rudy. http://www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz (1996)

  40. Sanchis, L.: Multiple-way network partitioning. IEEE Trans. Comput. 38, 62–81 (1989)

    Article  MATH  Google Scholar 

  41. Simon, H.D.: Partitioning of unstructured problems for parallel processing. Comput. Syst. Eng. 2, 35–148 (1991)

    Article  Google Scholar 

  42. Sotirov, R.: SDP relaxations for some combinatorial optimization problems. In: Anjos, M.F., Lasserre, J.B. (eds.) Handbook of Semidefinite, Cone and Polynomial Optimization: Theory, Algorithms, Software and Applications, pp. 795–820. Springer, New York (2012)

    Chapter  Google Scholar 

  43. Sotirov, R.: An efficient semidefinite programming relaxation for the graph partition problem. INFORMS J. Comput. 26(1), 16–30 (2014)

    Article  MathSciNet  Google Scholar 

  44. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12, 625–653 (1999)

  45. The GAP Group: GAP—Groups, Algorithms, and Programming. Version 4.5.6. http://www.gap-system.org (2012)

  46. van Dam, E.R., Sotirov, R.: On bounding the bandwidth of graphs with symmetry. INFORMS J. Comput. (to appear)

  47. Wedderburn, J.H.M.: On hypercomplex numbers. Proc. Lond. Math. Soc. 6(2), 77–118 (1907)

    MathSciNet  Google Scholar 

  48. Zhao, Q., Karisch, S.E., Rendl, F., Wolkowicz, H.: Semidefinite programming relaxations for the quadratic assignment problem. J. Comb. Optim. 2, 71–109 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  49. Wolkowicz, H., Zhao, Q.: Semidefinite programming relaxations for the graph partitioning problem. Discrete Appl. Math. 96/97, 461–479 (1999)

Download references

Acknowledgments

The authors would like to thank two anonymous referees for suggestions that led to an improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Sotirov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Dam, E.R., Sotirov, R. Semidefinite programming and eigenvalue bounds for the graph partition problem. Math. Program. 151, 379–404 (2015). https://doi.org/10.1007/s10107-014-0817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-014-0817-6

Keywords

Mathematics Subject Classification

Navigation