Skip to main content
Log in

Bounds for the quadratic assignment problem using the bundle method

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Semidefinite programming (SDP) has recently turned out to be a very powerful tool for approximating some NP-hard problems. The nature of the quadratic assignment problem (QAP) suggests SDP as a way to derive tractable relaxations. We recall some SDP relaxations of QAP and solve them approximately using a dynamic version of the bundle method. The computational results demonstrate the efficiency of the approach. Our bounds are currently among the strongest ones available for QAP. We investigate their potential for branch and bound settings by looking also at the bounds in the first levels of the branching tree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, W.P., Johnson, T.A.: Improved linear programming-based lower bounds for the quadratic assignment problem. In: Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, DIMACS Series in Discrete Mathematics and Theoretical Computes Sciences, vol.16, pp. 43–75. American Mathematical Society (1994)

  2. Anstreicher K. (2003): Recent advances in the solution of quadratic assignment problems. Mathe. Program. B 97, 27–42

    MathSciNet  MATH  Google Scholar 

  3. Anstreicher K., Brixius N. (2001): A new bound for the quadratic assignment problem based on convex quadratic programming. Mathe. Program. 89, 341–357

    Article  MathSciNet  MATH  Google Scholar 

  4. Anstreicher K., Brixius N., Goux J.-P., Linderoth J. (2002): Solving large quadratic assignment problems on computational grids. Mathe. Program. B 91, 563–588

    Article  MathSciNet  MATH  Google Scholar 

  5. Burer S., Monteiro R.D.C. (2005): Local minima and convergence in low-rank semidefinite programming. Mathe. Program. 103, 427–444

    Article  MathSciNet  MATH  Google Scholar 

  6. Burer S., Vandenbussche D. (2006): Solving lift-and-project relaxations of binary integer programs. SIAM J. Optim. 16(3): 726–750

    Article  MathSciNet  MATH  Google Scholar 

  7. Burkard R.E., Karisch S., Rendl F. (1997): QAPLIB – A quadratic assignment problem library. J. Global Optim. 10, 391–403

    Article  MathSciNet  MATH  Google Scholar 

  8. Burkard, R., Cela, E., Pardalos, P.M., Pitsoulis, L.: The quadratic assignment problem. In: Du, D.-Z., Pardalos, P.M., (eds.) Handbook of Combinatorial Optimization. Kluwer Dordrechet vol. 3, pp. 241–337 (1999)

  9. Çela F. (1998): The quadratic assignment problem: Theory and Algorithms. Kluwer, Massachessets

    MATH  Google Scholar 

  10. Clausen J., Perregaard M. (1997): Solving large quadratic assignment problems in parallel. Computa. Optimi. Appl. 8, 111–127

    Article  MathSciNet  MATH  Google Scholar 

  11. Finke G., Burkard R.E., Rendl F. (1987): Quadratic assignment problems. Ann. Discrete Mathe. 31, 61–82

    MathSciNet  Google Scholar 

  12. Fischer I., Gruber G., Rendl F., Sotirov R. (2006): Computational experience with a bundle approach for semidefinite cutting plane relaxations of max-cut and equipartition. Mathe. Program. B, 105, 451–469

    Article  MathSciNet  MATH  Google Scholar 

  13. Foster, I., Kesselman, C.: Computational grids. In: Foster, I., Kesselman, C.: (eds.) The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)

  14. Graham A. (1981): Kronecker Products and Matrix Calculus with Applications. Mathematics and its Applications. Ellis Horwood Limited, Chichester

    Google Scholar 

  15. Hadley S.W., Rendl F., Wolkowicz H. (1992): A new lower bound via projection for the quadratic assignment problem. Mathe. Oper. Res. 17, 727–739

    Article  MathSciNet  MATH  Google Scholar 

  16. Hahn P.M., Grant T., Hall N. (1998): A branch–and–bound algorithm for the quadratic assignment problem based on the hungarian method. Eur. J. Oper. Res. 108, 629–640

    Article  MATH  Google Scholar 

  17. Hahn P.M., Hightower W.L., Johnson T.A., Guignard–Spielberg M., Roucairol C. (2001): Tree elaboration strategies in branch and bound algorithms for solving the quadratic assignment problem. Yugosl. J. Oper. Res. 11, 41–60

    MathSciNet  MATH  Google Scholar 

  18. Helmberg, C.: A cutting plane algorithm for large scale semidefinite relaxations. In: Grötschel, M. (ed.) Padberg Festschrift: The Sharpest Cut, MPS-SIAM, pp. 233–256 (2004)

  19. Helmberg C., Rendl F. (2000): A spectral bundle method for semidefinite programming. SIAM J. Optim. 10(3): 673–69

    Article  MathSciNet  MATH  Google Scholar 

  20. Hiriart–Urruty J. B., Lemaréchal C. (1991): Convex Analysis and Minimization Algorithms II. Springer, Berlin Heidelberg New York

    Google Scholar 

  21. Karisch S.E. (1995). Nonlinear Approaches for Quadratic Assignment and Graph Partition Problems. Dissertation, Technical University of Graz, Austria

  22. Karisch S.E., Çela E., Clausen J., Espersen T. (1999): A dual framework for lower bounds of the quadratic assignment problem based on linearization. Computing 63, 351–403

    Article  MathSciNet  MATH  Google Scholar 

  23. Pardalos P.M., Pitsoulis L. (eds) (2000): Nonlinear Assignment Problems: Algorithms and Applications. Kluwer, Dordrecht

    MATH  Google Scholar 

  24. Pardalos, P.M., Wolkowicz, H. (eds.): Quadratic Assignment and Related Problems. American Mathematical Society, Providence, RI, (1994). Papers from the workshop held at Rutgers University, New Brunswick, New Jersey, May 20–21 (1993)

  25. Rendl F. (2002): The quadratic assignment problem. In: Drezner Z., Hamacher H.W. (eds) Facility Location: Applications and Theory. Springer, Berlin Heidelberg New York, pp. 439–457

    Google Scholar 

  26. Rendl F., Wolkowicz H. (1992): Applications of parametric programming and eigenvalue maximization to the quadratic assignment problem. Mathe. Program 53, 63–78

    Article  MathSciNet  MATH  Google Scholar 

  27. Resende M.G.C., Ramakrishnan K.G., Drezner Z. (1992): Computing lower bounds for the quadratic assignment problem with an interior point algorithm for linear programming. Oper. Res. 43(5): 63–78

    MathSciNet  Google Scholar 

  28. Sahni S., Gonzales T. (1976): P-complete approximation problems. J. ACM 23, 555–565

    Article  MATH  Google Scholar 

  29. Schramm H., Zowe J. (1992): A version of the bundle idea for minimizing a nonsmooth function: conceptional idea, convergence analysis, numerical results. SIAM J. Optim. 2, 121–152

    Article  MathSciNet  MATH  Google Scholar 

  30. Sotirov, R.: Bundle Methods in Combinatorial Optimization. Dissertation, University of Klagenfurt, Austria (2003)

  31. Zhao Q., Karisch S.E., Rendl F., Wolkowicz H. (1998): Semidefinite programming relaxations for the quadratic assignment problem. J. Combi. Optim. 2, 71–109

    Article  MathSciNet  MATH  Google Scholar 

  32. Zowe, J.: Nondifferentiable optimization – a motivation and a short introduction into the subgradient – and the bundle concept. In: Schittkowski, K. (eds.) NATO ASI Series, vol. 15, Computational Mathematical Programming. Springer, Berlin Heidelberg New York (1985)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franz Rendl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rendl, F., Sotirov, R. Bounds for the quadratic assignment problem using the bundle method. Math. Program. 109, 505–524 (2007). https://doi.org/10.1007/s10107-006-0038-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0038-8

Keywords

Mathematics Subject Classification (2000)

Navigation