Skip to main content

Advertisement

Log in

Divide to conquer: decomposition methods for energy optimization

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Modern electricity systems provide a plethora of challenging issues in optimization. The increasing penetration of low carbon renewable sources of energy introduces uncertainty in problems traditionally modeled in a deterministic setting. The liberalization of the electricity sector brought the need of designing sound markets, ensuring capacity investments while properly reflecting strategic interactions. In all these problems, hedging risk, possibly in a dynamic manner, is also a concern. The fact of representing uncertainty and/or competition of different companies in a multi-settlement power market considerably increases the number of variables and constraints. For this reason, usually a trade-off needs to be found between modeling and numerical tractability: the more details are brought into the model, the harder becomes the optimization problem. For structured optimization and generalized equilibrium problems, we explore some variants of solution methods based on Lagrangian relaxation and on Benders decomposition. Throughout we keep as a leading thread the actual practical value of such techniques in terms of their efficiency to solve energy related problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anstreicher K., Wolsey L.: Two “well-known” properties of subgradient optimization. Math. Program. 120, 213–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bacaud L., Lemaréchal C., Renaud A., Sagastizábal C.: Bundle methods in stochastic optimal power management: a disaggregated approach using preconditioners. Comput. Optim. Appl. 20(3), 227–244 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baldick R., Helman U., Hobbs B., O’Neill R.: Design of efficient generation markets. Proc. IEEE 93(11), 1998–2012 (2005)

    Article  Google Scholar 

  4. Barroso L., Carneiro R., Granville S., Pereira M., Fampa M.: Nash equilibrium in strategic bidding: a binary expansion approach. IEEE Trans. Power Syst. 21(2), 629–638 (2006)

    Article  Google Scholar 

  5. Batut J., Renaud A.: Daily generation scheduling with transmission constraints: a new class of algorithms. IEEE Trans. Power Syst. 7, 982–989 (1992)

    Article  Google Scholar 

  6. Belloni A., Diniz A., Maceira M., Sagastizábal C.: Bundle relaxation and primal recovery in unit commitment problems. The brazilian case. Ann. Oper. Res. 120, 21–44 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsekas D.P.: Convexification procedures and decomposition methods for nonconvex optimization problems. J. Optim. Theory Appl. 29, 169–197 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bertsekas D.P., Tseng P.: Partial proximal minimization algorithms for convex programming. SIAM J. Optim. 4, 551–572 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bienstock D., Shapiro J.: Optimizing resource acquisition decisions by stochastic programming. Manag. Sci. 34(7), 215–229 (1988)

    Article  Google Scholar 

  10. Birge J., Donohue C.J.: The abridged nested decomposition method for multistage stochastic linear programs with relatively complete recourse. Algorithm. Oper. Res. 1, 20–30 (2001)

    MathSciNet  Google Scholar 

  11. Bonnans, J.-F., Gilbert, J-Ch., Lemaréchal, C., Sagastizábal, C.: Numerical optimization. Theoretical and Practical Aspects. Universitext, 2nd edn. Springer, Berlin (2006)

  12. Borghetti A., D’Ambrosio C., Lodi A., Martello S.: An MILP approach for short-term hydro scheduling and unit commitment with head-dependent reservoir. IEEE Trans. Power Syst. 23(3), 1115–1124 (2008)

    Article  Google Scholar 

  13. Bruno S., Sagastizábal C.: Optimization of real asset portfolio using a coherent risk measure: application to oil and energy industries. Optim. Eng. 12, 257–275 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carøe C.C., Schultz R.: Dual decomposition in stochastic integer programming. Oper. Res. Lett. 24, 37–45 (1997)

    Article  Google Scholar 

  15. Carpentier P., Cohen G., Culioli J.C., Renaud A.: Stochastic optimization of unit commitment: a new decomposition framework. IEEE Trans. Power Syst. 11(2), 1067–1073 (1996)

    Article  Google Scholar 

  16. Chen Z.L., Powell W.: A convergent cutting-plane and partial-sampling algorithm for multistage stochastic linear programs with recourse. J. Optim. Theory Appl. 102, 497–524 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chung W., Fuller J.D.: Subproblem approximation in Dantzig–Wolfe decomposition of variational inequality models with an application to a multicommodity economic equilibrium model. Oper. Res. 58, 1318–1327 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cohen, G., Zhu, D.L.: Decomposition coordination methods in large scale optimization problems: the nondifferentiable case and the use of augmented Lagrangians. In: Cruz, J.B. (ed.) Advances in Large Scale Systems, vol. 1, pp. 203–266. JAI, Greenwich, CT (1984)

  19. Conejo A.J., Carrión M., Morales J.M.: Decision Making Under Uncertainty in Electricity Markets. International Series in Operations Research & Management Science. Springer, New York (2010)

    Book  Google Scholar 

  20. Conejo A.J., Redondo N.J.: Short-term hydro-thermal coordination by Lagrangian relaxation: solution of the dual problem. IEEE Trans. Power Syst. 14(1), 89–95 (1999)

    Article  Google Scholar 

  21. Culioli J.C., Cohen G.: Decomposition/coordination algorithms in stochastic optimization. SIAM J. Control Optim. 28(6), 1372–1403 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Daniilidis A., Lemaréchal C.: On a primal-proximal heuristic in discrete optimization. Math. Program. 104, 105–128 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. David, A., Wen, F.: Strategic bidding in competitive electricity markets: a literature survey. In: Power Engineering Society Summer Meeting, 2000. IEEE, vol. 4, pp. 2168–2173 (2000)

  24. Day C., Hobbs B., Pang J.S.: Oligopolistic competition in power networks: a conjectured supply function approach. IEEE Trans. Power Syst. 17(3), 597–607 (2002)

    Article  Google Scholar 

  25. Diniz, A., Sagastizábal, C., Maceira, M.: Assessment of Lagrangian relaxation with variable splitting for hydrothermal scheduling. Power Eng. Soc. Gen. Meet. IEEE. (2007). doi:10.1109/PES.2007.386246

  26. Doukopoulos G.H., Charousset S.B., Malick J., Lemaréchal C.: The short-term electricity production management problem at EDF. OPTIMA 84, 2–6 (2010)

    Google Scholar 

  27. Dubost L., Gonzalez R., Lemaréchal C.: A primal-proximal heuristic applied to the French unit-commitment problem. Math. Program. 104, 129–151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ehrenmann A., Neuhoff K.: A comparison of electricity market designs in networks. Oper. Res. 57(2), 274–286 (2009)

    Article  MATH  Google Scholar 

  29. Ehrenmann, A., Smeers, Y.: Capacity expansion in non-regulated electricity markets. In: Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS’06) Track 10 (2006). http://doi.ieeecomputersociety.org/10.1109/HICSS.2006.80

  30. Emiel G., Sagastizábal C.: Incremental-like bundle methods with application to energy planning. Comput. Optim. Appl. 46, 305–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Escobar J., Jofré A.: Monopolistic competition in electricity networks with resistance losses. Econ. Theory 44, 101–121 (2010)

    Article  MATH  Google Scholar 

  32. Fábián C., Mitra G., Roman D.: Processing second-order stochastic dominance models using cutting-plane representations. Math. Program. 130, 33–57 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fábián C.I., Szőke Z.: Solving two-stage stochastic programming problems with level decomposition. Comput. Manag. Sci. 4(4), 313–353 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Facchinei F., Fischer A., Piccialli V.: On generalized Nash games and variational inequalities. Oper. Res. Lett. 35(2), 159–164 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Facchinei F., Kanzow C.: Generalized Nash equilibrium problems. Ann. OR 175(1), 177–211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Feltenmark S., Kiwiel K.C.: Dual applications of proximal bundle methods, including Lagrangian relaxation of nonconvex problems. SIAM J. Optim. 10(3), 697–721 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ferris M.C., Munson T.S.: Interfaces to PATH 3.0: design, implementation and usage. Comput. Optim. Appl. 12, 207–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Finardi E., da Silva E.: Solving the hydro unit commitment problem via dual decomposition and sequential quadratic programming. IEEE Trans. Power Syst. 21(2), 835–844 (2006)

    Article  Google Scholar 

  39. Fisher E., O’Neill R., Ferris M.: Optimal transmission switching. IEEE Trans. Power Syst. 23(3), 1346–1355 (2008)

    Article  Google Scholar 

  40. Frangioni A.: Unit Commitment problems: a tale in Lagrangian optimization. OPTIMA 84, 6–7 (2010)

    Google Scholar 

  41. Frangioni, A., Gendron, B.: A stabilized structured Dantzig–Wolfe decomposition method. Math. Program. (2011) (accepted for publication)

  42. Frangioni A., Gentile C.: Solving nonlinear single-unit commitment problems with ramping constraints. Oper. Res. 54(4), 767–775 (2006)

    Article  MATH  Google Scholar 

  43. Frangioni, A., Gorgone, E.: Generalized bundle methods for sum-functions with “easy” components: applications to multicommodity network design. Tech. rep., Optimization online. http://www.optimization-online.org/DB_HTML/2011/06/3049.html (2011)

  44. Fuller J.D., Chung W.: Dantzig–Wolfe decomposition of variational inequalities. Comput. Econ. 25, 303–326 (2005)

    Article  MATH  Google Scholar 

  45. Gabriel S., Fuller J.: A Benders decomposition method for solving stochastic complementarity problems with an application in energy. Comput. Econ. 35(4), 301–329 (2010)

    Article  MATH  Google Scholar 

  46. Gabriel S.A., Zhuang J., Egging R.: Solving stochastic complementarity problems in energy market modeling using scenario reduction. Eur. J. Oper. Res. 197(3), 1028–1040 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Gollmer R., Nowak M., Römisch W., Schultz R.: Unit commitment in power generation a basic model and some extensions. Ann. Oper. Res. 96, 167–189 (2000)

    Article  MATH  Google Scholar 

  48. Gröwe-Kuska, N., Kiwiel, K.C., Nowak, M.P., Römisch, W., Wegner, I.: Decision making under uncertainty: energy and power, IMA volumes in mathematics and its applications, vol. 128, In: Greengard, C., Ruszczynski, A. (eds.) Power Management in a Hydro-thermal System Under Uncertainty by Lagrangian Relaxation, pp. 39–70. Springer, New York (2002)

  49. Guignard M.: Lagrangean decomposition. TOP 11(2), 151–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  50. Guignard M., Kim S.: Lagrangean decomposition: a model yielding stronger Lagrangean bounds. Math. Program. 39(2), 215–228 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  51. Guigues V., Römisch W.: Sampling-based decomposition methods for multistage stochastic programs based on extended polyhedral risk measures. SIAM J. Optim. 22(2), 286–312 (2012)

    Article  Google Scholar 

  52. Guigues, V., Sagastizábal, C.: Risk averse feasible policies for large-scale multistage stochastic linear programs. Math. Program. (2012) (accepted for publication)

  53. Guigues V., Sagastizábal C.: The value of rolling horizon policies for risk-averse hydro-thermal planning. Eur. J. Oper. Res. 217, 219–240 (2012)

    Article  Google Scholar 

  54. Guigues, V., Sagastizábal, C.: Exploiting structure of autoregressive processes in chance-constrained multistage stochastic linear programs. Oper. Res. Lett. (2012) (accepted for publication)

  55. Guigues, V., Sagastizábal, C., Zubelli, J.: Robust management and pricing of LNG contracts with cancellation options. Tech. rep., IMPA. http://www.preprint.impa.br/Shadows/SERIE_A/2010/687.html (2009)

  56. Heitsch H., Römisch W.: Stability and scenario trees for multistage stochastic programs. In: Infanger, G. (ed) Stochastic Programming, International Series in Operations Research & Management Science, vol. 150, pp. 139–164. Springer, New York (2011)

    Google Scholar 

  57. Higle J.L., Sen S.: Finite master programs in regularized stochastic decomposition. Math. Program. 67(2, Ser. A), 143–168 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  58. Hinze M., Tröltzsch F.: Discrete concepts versus error analysis in PDE-constrained optimization. GAMM-Mitteilungen 33(2), 148–162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. No. 305-306 in Grund. der math. Wiss. Springer, Berlin (1993) (two volumes)

  60. Hobbs B., Metzler C., Pang J.S.: Strategic gaming analysis for electric power systems: an MPEC approach. IEEE Trans. Power Syst. 15(2), 638–645 (2000)

    Article  Google Scholar 

  61. Hobbs B.F., Pang J.S.: Spatial oligopolistic equilibria with arbitrage, shared resources, and price function conjectures. Math. Program. 101, 57–94 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  62. Hu X., Ralph D.: Using EPECs to model bilevel games in restructured electricity markets with locational prices. Oper. Res. 55(5), 809–827 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. Kannan, A., Shanbhag, U.V., Kim, H.M.: Addressing supply-side risk in uncertain power markets: stochastic generalized Nash models, scalable algorithms and error analysis. Optim. Methods Softw. (2012) (to appear)

  64. Kannan A., Shanbhag U.V., Kim H.M.: Strategic behavior in power markets under uncertainty. Energy Syst. 2(2), 115–141 (2011)

    Article  Google Scholar 

  65. Khodaei A., Shahidehpour M., Kamalinia S.: Transmission switching in expansion planning. IEEE Trans. Power Syst. 25(3), 1722–1733 (2010)

    Article  Google Scholar 

  66. Kiwiel K.C.: A proximal bundle method with approximate subgradient linearizations. SIAM J. Optim. 16, 1007–1023 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  67. Kiwiel, K.C.: Bundle methods for convex minimization with partially inexact oracles. Tech. rep., Optimization online. http://www.optimization-online.org/DB-HTML/2009/03/2257.html (2009)

  68. Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2001/02)

    Google Scholar 

  69. Kulkarni A.A., Shanbhag U.V.: On the variational equilibrium as a refinement of the generalized Nash equilibrium. Automatica 48, 45–55 (2012)

    Article  MathSciNet  Google Scholar 

  70. Lemaréchal C.: Lagrangian relaxation. In: Jünger, M., Naddef, D. (eds) Computational Combinatorial Optimization, pp. 112–156. Springer, Berlin (2001)

    Chapter  Google Scholar 

  71. Lemaréchal C., Pellegrino F., Renaud A., Sagastizábal C.: Bundle methods applied to the unit-commitment problem. In: Dolezal, J., Fidler, J. (eds) System Modelling and Optimization., pp. 395–402. Chapman and Hall, London (1996)

    Google Scholar 

  72. Lemaréchal C., Renaud A.: A geometric study of duality gaps, with applications. Math. Program. 90, 399–427 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  73. Lemaréchal C., Sagastizábal C.: Variable metric bundle methods: from conceptual to implementable forms. Math. Program. A 76, 393–410 (1997)

    Article  MATH  Google Scholar 

  74. Luna, J.P., Sagastizábal, C., Solodov, M.: A class of Dantzig–Wolfe type decomposition methods for variational inequality problems. Tech. rep., Optimization online. http://www.optimization-online.org/DB_HTML/2011/11/3256.html (2011)

  75. Marcato R., Sagastizábal C.: Introducing environmental constraints in generation expansion problems. Numer. Linear Algebra Appl. 14, 351–368 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  76. Martinez M.G., Diniz A., Sagastizábal C.: A comparative study of two forward dynamic programming techniques for solving local thermal unit commitment problem. In: Proceedings of the 16th Power Systems Computation Conference. http://www.pscc-central.org/uploads/tx_ethpublications/pscc2008_323.pdf (2008)

  77. Motto A., Galiana F.: Coordination in markets with nonconvexities as a mathematical program with equilibrium constraints-part I: a solution procedure. IEEE Trans. Power Syst. 19(1), 308–316 (2004)

    Article  Google Scholar 

  78. Moulin L., Poss M., Sagastizábal C.: Transmission expansion planning with re-design. Energy Syst. 1, 113–139 (2010)

    Article  Google Scholar 

  79. Nedič A., Ozdaglar A.E.: A geometric framework for nonconvex optimization duality using augmented Lagrangian functions. J. Glob. Optim. 40(4), 545–573 (2008)

    Article  Google Scholar 

  80. Nowak M.P., Römisch W.: Stochastic Lagrangian relaxation applied to power scheduling in a hydro-thermal system under uncertainty. Ann. Oper. Res. 100, 251–272 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  81. Nowak M.P., Schultz R., Westphalen M.: A stochastic integer programming model for incorporating day-ahead trading of electricity into hydro-thermal unit commitment. Optim. Eng. 6, 163–176 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  82. Nurnberg R., Römisch W.: A two-stage planning model for power scheduling in a hydro-thermal system under uncertainty. Optim. Eng. 3, 355–378 (2002)

    Article  MathSciNet  Google Scholar 

  83. Oliveira, W.L., Sagastizábal, C.: Level bundle methods for oracles with on-demand accuracy. Tech. rep., Optimization online. http://www.optimization-online.org/DB_HTML/2012/03/3390.html (2012)

  84. Oliveira, W.L., Sagastizábal, C., Lemaréchal, C.: Inaccurate bundle methods in depth: a unified convergence framework (2012) (in preparation)

  85. Oliveira W.L., Sagastizábal C., Penna D., Maceira M., Damázio J.: Optimal scenario tree reduction for stochastic streamflows in power generation planning problems. Optim. Methods Softw. 25, 917–936 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  86. Oliveira W.L., Sagastizábal C., Scheimberg S.: Inexact bundle methods for two-stage stochastic programming. SIAM J. Optim. 21, 517–544 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  87. Pereira M., Pinto L.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52(2), 359–375 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  88. Philpott A., Guan Z.: On the convergence of stochastic dual dynamic programming and related methods. Oper. Res. Lett. 36(4), 450–455 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  89. Philpott A., de Matos V.: Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion. Eur. J. Oper. Res. 218, 470–483 (2012)

    Article  Google Scholar 

  90. Philpott A., Schultz R.: Unit commitment in electricity pool markets. Math. Program. 108, 313–337 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  91. Ralph, D., Smeers, Y.: EPECs as models for electricity markets. In: Power Systems Conference and Exposition, 2006. PSCE ’06. 2006 IEEE PES, pp. 74–80 (2006). doi:10.1109/PSCE.2006.296252

  92. Rebennack, S., Pardalos, P., Pereira, M., Iliadis, N. (eds): Handbook of Power Systems, Energy Systems, vol. I and II. Springer, Berlin (2010)

    Google Scholar 

  93. Rockafellar R., Uryasev S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26(7), 1443–1471 (2002)

    Article  Google Scholar 

  94. Rubinov A.M., Huang X.X., Yang X.Q.: The zero duality gap property and lower semicontinuity of the perturbation function. Math. Oper. Res. 27(4), 775–791 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  95. Ruszczyński A.: On convergence of an augmented Lagrangian decomposition method for sparse convex optimization. Math. Oper. Res. 20(3), 634–656 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  96. Ruszczyński A.: Decomposition methods. In: Ruszczynski, A., Shapiro, A. (eds) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, pp. 141–211. Elsevier, Amsterdam (2003)

    Google Scholar 

  97. Sen S.: Algorithms for stochastic mixed-integer programming models. In: Aardal, G.N.K., Weismantel, R. (eds) Discrete Optimization, Handbooks in Operations Research and Management Science, vol. 12, pp. 515–558. Elsevier, Amsterdam (2005)

    Google Scholar 

  98. Sen S., Yu L., Genc T.: A stochastic programming approach to power portfolio optimization. Oper. Res. 54(1), 55–72 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  99. Shapiro A.: Analysis of stochastic dual dynamic programming method. Eur. J. Oper. Res. 209(1), 63–72 (2011)

    Article  MATH  Google Scholar 

  100. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming: Modeling and Theory. MPS/SIAM Series on Optimization, vol. 9, pp. xvi+436 (2009)

  101. Shapiro, A., Tekaya, W.: Report for technical cooperation between Georgia Institute of Technology and ONS—Operador Nacional do Sistema Elétrico. Report 2: risk averse approach. http://www.isye.gatech.edu/people/faculty/Alex_Shapiro/Report-4.pdf (2011)

  102. Takriti S., Birge J., Long E.: A stochastic model for the unit commitment problem. IEEE Trans. Power Syst. 11, 1497–1508 (1996)

    Article  Google Scholar 

  103. Van Ackooij W., Henrion R., Möller A., Zorgati R.: On probabilistic constraints induced by rectangular sets and multivariate normal distributions. Math. Methods Oper. Res. 71, 535–549 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  104. Van Ackooij W., Henrion R., Möller A., Zorgati R.: On joint probabilistic constraints with gaussian coefficient matrix. Oper. Res. Lett. 39(2), 99–102 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  105. Van Ackooij, W., Zorgati, R., Henrion, R., Möller, A.: Chance constrained programming and its applications to energy management. In: Dritsas, I. (ed.) Stochastic Optimization—Seeing the Optimal for the Uncertain, pp. 291–320. InTech. http://www.intechopen.com/books/show/title/stochastic-optimization-seeing-the-optimal-for-the-uncertain (2011)

  106. Van Slyke R., Wets R.: L-shaped linear programs with applications to control and stochastic programming. SIAM J. Appl. Math. 17, 638–663 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  107. Wallace S.W., Fleten S.E.: Stochastic programming models in energy. In: Ruszczynski, A., Shapiro, A. (eds) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, pp. 637–677. Elsevier, Amsterdam (2003)

    Google Scholar 

  108. Yakowitz D.: A regularized stochastic decomposition algorithm for two-stage stochastic linear programs. Comput. Optim. Appl. 3(1), 59–81 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  109. Yao J., Oren S.S., Adler I.: Two-settlement electricity markets with price caps and Cournot generation firms. Eur. J. Oper. Res. 181(3), 1279–1296 (2007)

    Article  MATH  Google Scholar 

  110. Yin H., Shanbhag U., Mehta P.: Nash equilibrium problems with scaled congestion costs and shared constraints. IEEE Trans. Autom. Control 56(7), 1702–1708 (2011)

    Article  MathSciNet  Google Scholar 

  111. Zakeri G., Philpott A.B., Ryan D.M.: Inexact cuts in Benders decomposition. SIAM J. Optim. 10(3), 643–657 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sagastizábal.

Additional information

Research partially supported by Grants CNPq 303840/2011-0, AFOSR FA9550-08-1-0370, NSF DMS 0707205, as well as by PRONEX-Optimization and FAPERJ.

C. Sagastizábal: on leave from INRIA, France.

C. Sagastizábal is a visiting researcher at IMPA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sagastizábal, C. Divide to conquer: decomposition methods for energy optimization. Math. Program. 134, 187–222 (2012). https://doi.org/10.1007/s10107-012-0570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-012-0570-7

Keywords

Mathematics Subject Classification

Navigation