Skip to main content
Log in

Processing second-order stochastic dominance models using cutting-plane representations

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Second-order stochastic dominance (SSD) is widely recognised as an important decision criterion in portfolio selection. Unfortunately, stochastic dominance models are known to be very demanding from a computational point of view. In this paper we consider two classes of models which use SSD as a choice criterion. The first, proposed by Dentcheva and Ruszczyński (J Bank Finance 30:433–451, 2006), uses a SSD constraint, which can be expressed as integrated chance constraints (ICCs). The second, proposed by Roman et al. (Math Program, Ser B 108:541–569, 2006) uses SSD through a multi-objective formulation with CVaR objectives. Cutting plane representations and algorithms were proposed by Klein Haneveld and Van der Vlerk (Comput Manage Sci 3:245–269, 2006) for ICCs, and by Künzi-Bay and Mayer (Comput Manage Sci 3:3–27, 2006) for CVaR minimization. These concepts are taken into consideration to propose representations and solution methods for the above class of SSD based models. We describe a cutting plane based solution algorithm and outline implementation details. A computational study is presented, which demonstrates the effectiveness and the scale-up properties of the solution algorithm, as applied to the SSD model of Roman et al. (Math Program, Ser B 108:541–569, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dentcheva, D.: Private communication (2006)

  2. Dentcheva D., Ruszczyński A.: Portfolio optimization with stochastic dominance constraints. J. Bank. Finance 30, 433–451 (2006)

    Article  Google Scholar 

  3. Ellison, E.F.D., Hajian, M., Levkovitz, R., Maros, I., Mitra, G.: A Fortran based mathematical programming system FortMP. Brunel University/Uxbridge, NAG Ltd/Oxford (1999)

  4. Fábián, C.I.: Handling CVaR objectives and constraints in two-stage stochastic models. Eur. J. Oper. Res. 191, 888–911 (special issue on continuous optimization in industry. Illés, T., Lopez, M., Vörös, J., Terlaky, T., Weber, G-W. eds.) (2008)

  5. Fábián C.I., Szőke Z.: Solving two-stage stochastic programming problems with level decomposition. Comput. Manage. Sci. 4, 313–353 (2007)

    Article  MATH  Google Scholar 

  6. Fábián C.I., Veszprémi A.: Algorithms for handling CVaR-constraints in dynamic stochastic programming models with applications to finance. J. Risk 10, 111–131 (2008)

    Google Scholar 

  7. Fishburn P.C.: Decision and Value Theory. Wiley, New York (1964)

    MATH  Google Scholar 

  8. Fishburn P.C.: Utility Theory for Decision Making. Wiley, New York (1970)

    MATH  Google Scholar 

  9. Fishburn P.C.: Mean-risk analysis with risk associated with below-target returns. Am. Econ. Rev. 67, 116–126 (1977)

    Google Scholar 

  10. Fourer, R., Gay, D.M., Kernighan, B.: AMPL: a mathematical programming language (1989)

  11. Hadar J., Russell W.: Rules for ordering uncertain prospects. Am. Econ. Rev. 59, 25–34 (1969)

    Google Scholar 

  12. Hardy G.H., Littlewood J.E., Polya G.: Inequalities. Cambridge University Press, Cambridge (1934)

    Google Scholar 

  13. Kall, P., Mayer, J.: Stochastic linear programming: models, theory, and computation. Springer, Int. Ser. Oper. Res. Manage. Sci. (2005)

  14. Klein Haneveld W.K.: Duality in Stochastic Linear and Dynamic Programming. Lecture Notes in Economics and Math. Systems, vol. 274. Springer, New York (1986)

    Google Scholar 

  15. Klein Haneveld, W.K., van der Vlerk, M.H.: Integrated chance constraints: reduced forms and an algorithm. Comput. Manage. Sci. 3, 245–269 (2006), First published as SOM Research Report 02A33, University of Groningen (2002)

  16. Krokhmal P., Palmquist J., Uryasev S.: Portfolio optimization with conditional value-at-risk objective and constraints. J. Risk 4, 11–27 (2002)

    Google Scholar 

  17. Krokhmal, P., Soberanis, P.: Risk optimization with p-order conic constraints: a linear programming approach. Working paper, Department of Mechanical and Industrial Engineering, The University of Iowa, IA 52242 (2008)

  18. Künzi-Bay A., Mayer J.: Computational aspects of minimizing conditional value-at-risk. Comput. Manage. Sci. 3, 3–27 (2006)

    Article  MATH  Google Scholar 

  19. Lemaréchal C., Nemirovskii A., Nesterov Yu.: New variants of bundle methods. Math. Program. 69, 111–147 (1995)

    Article  MATH  Google Scholar 

  20. Levy H.: Stochastic dominance and expected utility: survety and analysis. Manage. Sci. 38, 555–593 (1992)

    Article  MATH  Google Scholar 

  21. Lim, C., Sherali, H.D., Uryasev, S.: Portfolio optimization by minimizing conditional value-at-risk via nondifferentiable optimization. Comput. Optim. Appl. (2008) doi:10.1007/s10589-008-9196-3

  22. Mansini R., Ogryczak W., Speranza M.G.: Conditional value-at-risk and related linear programming models for portfolio optimization. Ann. Oper. Res. 152, 227–256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Markowitz H.: Portfolio selection. J. Finance 7, 77–91 (1952)

    Article  Google Scholar 

  24. von Neumann J., Morgenstern O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1947)

    Google Scholar 

  25. Ogryczak W.: Multiple criteria linear programming model for portfolio selection. Ann. Oper. Res. 97, 143–162 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ogryczak W.: Multiple criteria optimization and decisions under risk. Control Cybern. 31, 975–1003 (2002)

    MATH  Google Scholar 

  27. Ogryczak W., Ruszczyński A.: From stochastic dominance to mean-risk models: semideviations as risk measures. Eur. J. Oper. Res. 116, 33–50 (1999)

    Article  MATH  Google Scholar 

  28. Ogryczak W., Ruszczyński A.: On consistency of stochastic dominance and mean-semideviations models. Math. Program. 89, 217–232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ogryczak W., Ruszczyński A.: Dual stochastic dominance and related mean-risk models. SIAM J. Optim. 13, 60–78 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Prékopa, A.: Probabilistic programming. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, Handbooks in Operations Research and Management Science, vol. 10, Elsevier: Amsterdam

    Google Scholar 

  31. Quirk J.P., Saposnik R.: Admissibility and measurable utility functions. Rev. Econ. Stud. 29, 140–146 (1962)

    Article  Google Scholar 

  32. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  33. Rockafellar, R.T.: Coherent approaches to risk in optimization under uncertainty. Tutorials in Oper. Res. INFORMS, 38–61 (2007)

  34. Rockafellar R.T., Uryasev S.: Optimization of conditional value-at-risk. J. Risk 2, 21–41 (2000)

    Google Scholar 

  35. Rockafellar R.T., Uryasev S.: Conditional value-at-risk for general loss distributions. J. Bank. Finance 26, 1443–1471 (2002)

    Article  Google Scholar 

  36. Roman D., Darby-Dowman K., Mitra G.: Portfolio construction based on stochastic dominance and target return distributions. Math. Program. Ser. B 108, 541–569 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Roman D., Mitra G., Darby-Dowman K.: Mean-risk models using two risk measures: a multi-objective approach. Quant. Finance 7, 443–458 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ross S.M.: An Elementary Introduction to Mathematical Finance. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  39. Ruszczyński A.: A regularized decomposition method for minimizing the sum of polyhedral functions. Math. Program. 35, 309–333 (1986)

    Article  MATH  Google Scholar 

  40. Sadki, A.M.: AMPL COM Component Library, User’s Guide Version 1.6. Internal T. Report (2005). See also http://www.optirik-systems.com/products/AMPLCOM

  41. Whitmore G.A.: Third-degree stochastic dominance. Am. Econ. Rev. 60, 457–459 (1970)

    Google Scholar 

  42. Whitmore G.A., Findlay M.C.: Stochastic Dominance: An Approach to Decision-Making Under Risk. D.C.Heath, Lexington, MA (1978)

    Google Scholar 

  43. Wierzbicki A.: A mathematical basis for satisficing decision making. Math. Model. 3, 391–405 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yamai Y., Yoshiba T.: Comparative analyses of expected shortfall and value-at-risk: expected utility maximization and tail risk. Monet. Econ. Stud. 20, 57–86 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Mitra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fábián, C.I., Mitra, G. & Roman, D. Processing second-order stochastic dominance models using cutting-plane representations. Math. Program. 130, 33–57 (2011). https://doi.org/10.1007/s10107-009-0326-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-009-0326-1

Mathematics Subject Classification (2000)

Navigation