Skip to main content
Log in

Optimization methods and stability of inclusions in Banach spaces

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

Our paper deals with the interrelation of optimization methods and Lipschitz stability of multifunctions in arbitrary Banach spaces. Roughly speaking, we show that linear convergence of several first order methods and Lipschitz stability mean the same. Particularly, we characterize calmness and the Aubin property by uniformly (with respect to certain starting points) linear convergence of descent methods and approximate projection methods. So we obtain, e.g., solution methods (for solving equations or variational problems) which require calmness only. The relations of these methods to several known basic algorithms are discussed, and errors in the subroutines as well as deformations of the given mappings are permitted. We also recall how such deformations are related to standard algorithms like barrier, penalty or regularization methods in optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin J.-P. and Ekeland I. (1984). Applied Nonlinear Analysis. Wiley, New York

    MATH  Google Scholar 

  2. Bank B., Guddat J., Klatte D., Kummer B. and Tammer K. (1982). Non-Linear Parametric Optimization. Akademie-Verlag, Berlin

    Google Scholar 

  3. Bonnans J.F. and Shapiro A. (2000). Perturbation Analysis of Optimization Problems. Springer, New York

    MATH  Google Scholar 

  4. Burke J.V. (1991). Calmness and exact penalization. SIAM J. Control Optim. 29: 493–497

    Article  MATH  MathSciNet  Google Scholar 

  5. Burke, J.V., Deng, S.: Weak sharp minima revisited, Part III: Error bounds for differentiable convex inclusions. Math. Programm. Published online (2007)

  6. Clarke F.H. (1983). Optimization and Nonsmooth Analysis. Wiley, New York

    MATH  Google Scholar 

  7. Cominetti R. (1990). Metric regularity, tangent sets and second-order optimality conditions. Appl. Math. Optimiz. 21: 265–287

    Article  MATH  MathSciNet  Google Scholar 

  8. Dempe S. (2002). Foundations of Bilevel Programming. Kluwer, Dordrecht

    MATH  Google Scholar 

  9. Dolecki S. and Rolewicz S. (1979). Exact penalties for local minima. SIAM J. Control Optim. 17: 596–606

    Article  MATH  MathSciNet  Google Scholar 

  10. Dontchev A. (1996). Local convergence of the Newton method for generalized equations. Comptes Rendus de l’Acédemie des Sciences de Paris 332: 327–331

    MathSciNet  Google Scholar 

  11. Dontchev A. and Rockafellar R.T. (2004). Regularity and conditioning of solution mappings in variational analysis. Set-Valued Anal. 12: 79–109

    Article  MATH  MathSciNet  Google Scholar 

  12. Ekeland I. (1974). On the variational principle. J. Math. Anal. Appl. 47: 324–353

    Article  MATH  MathSciNet  Google Scholar 

  13. Facchinei F. and Pang J.-S. (2003). Finite-Dimensional Variational Inequalities and Complementary Problems, Vol I and Vol II. Springer, New York

    Google Scholar 

  14. Fusek P. (2001). Isolated zeros of Lipschitzian metrically regular Rn functions. Optimization 49: 425–446

    Article  MATH  MathSciNet  Google Scholar 

  15. Graves L.M. (1950). Some mapping theorems. Duke Math. J. 17: 11–114

    Article  MathSciNet  Google Scholar 

  16. Grossmann C., Klatte D. and Kummer B. (2004). Convergence of primal-dual solutions for the nonconvex log-barrier method without LICQ. Kybernetika 40: 571–584

    MathSciNet  Google Scholar 

  17. Henrion R. and Outrata J. (2001). A subdifferential condition for calmness of multifunctions. J. Math. Anal. Appl. 258: 110–130

    Article  MATH  MathSciNet  Google Scholar 

  18. Henrion R. and Outrata R. (2005). Calmness of constraint systems with applications. Math. Program. Ser. B 104: 437–464

    Article  MATH  MathSciNet  Google Scholar 

  19. Ioffe A.D. (2000). Metric regularity and subdifferential calculus. Russ. Math. Surv. 55: 501–558

    Article  MATH  MathSciNet  Google Scholar 

  20. Klatte D. and Kummer B. (2002). Constrained minima and Lipschitzian penalties in metric spaces. SIAM J. Optim. 13(2): 619–633

    Article  MATH  MathSciNet  Google Scholar 

  21. Klatte D. and Kummer B. (2002). Nonsmooth Equations in Optimization—Regularity, Calculus, Methods and Applications. Kluwer, Dordrecht

    MATH  Google Scholar 

  22. Klatte D. and Kummer B. (2005). Strong Lipschitz stability of stationary solutions for nonlinear programs and variational inequalities. SIAM J. Optim. 16: 96–119

    Article  MATH  MathSciNet  Google Scholar 

  23. Klatte D. and Kummer B. (2006). Stability of inclusions: Characterizations via suitable Lipschitz functions and algorithms. Optimization 55: 627–660

    Article  MATH  MathSciNet  Google Scholar 

  24. Kummer B. (1998). Lipschitzian and pseudo-Lipschitzian inverse functions and applications to nonlinear programming. In: Fiacco, A.V. (eds) Mathematical Programming with Data Perturbations, pp 201–222. Marcel Dekker, New York

    Google Scholar 

  25. Kummer B. (1999). Metric regularity: characterizations, nonsmooth variations and successive approximation. Optimization 46: 247–281

    Article  MATH  MathSciNet  Google Scholar 

  26. Kummer B. (2000). Inverse functions of pseudo regular mappings and regularity conditions. Math. Program. Ser. B 88: 313–339

    Article  MATH  MathSciNet  Google Scholar 

  27. Li W. (1997). Abadie’s constraint qualification, metric regularity and error bounds for differentiable convex inequalities. SIAM J. Optim. 7: 966–978

    Article  MATH  MathSciNet  Google Scholar 

  28. Lyusternik L. (1934). Conditional extrema of functions. Math. Sbornik 41: 390–401

    MATH  Google Scholar 

  29. Mordukhovich B.S. (1988). Approximation Methods in Problems of Optimization and Control (in Russian). Nauka, Moscow

    Google Scholar 

  30. Outrata J., Kočvara M. and Zowe J. (1998). Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht

    MATH  Google Scholar 

  31. Robinson S.M. (1976). Stability theorems for systems of inequalities. Part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13: 497–513

    Article  MATH  MathSciNet  Google Scholar 

  32. Robinson S.M. (1979). Generalized equations and their solutions, Part I: Basic theory. Math. Program. Study 10: 128–141

    MATH  Google Scholar 

  33. Robinson S.M. (1980). Strongly regular generalized equations. Math. Oper. Res. 5: 43–62

    Article  MATH  MathSciNet  Google Scholar 

  34. Robinson S.M. (1982). Generalized equations and their solutions Part II: Applications to nonlinear programming. Math. Program. Study 19: 200–221

    MATH  Google Scholar 

  35. Robinson S.M. (2003). Variational conditions with smooth constraints: structure and analysis. Math. Program. 97: 245–265

    MATH  MathSciNet  Google Scholar 

  36. Rockafellar R.T. and Wets R.J.-B. (1998). Variational Analysis. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diethard Klatte.

Additional information

This paper is dedicated to Professor Stephen M. Robinson on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klatte, D., Kummer, B. Optimization methods and stability of inclusions in Banach spaces. Math. Program. 117, 305–330 (2009). https://doi.org/10.1007/s10107-007-0174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-007-0174-9

Keywords

Mathematics Subject Classification (2000)

Navigation