Skip to main content
Log in

Lagrangian decomposition of block-separable mixed-integer all-quadratic programs

  • Published:
Mathematical Programming Submit manuscript

Abstract.

The purpose of this paper is threefold. First we propose splitting schemes for reformulating non-separable problems as block-separable problems. Second we show that the Lagrangian dual of a block-separable mixed-integer all-quadratic program (MIQQP) can be formulated as an eigenvalue optimization problem keeping the block-separable structure. Finally we report numerical results on solving the eigenvalue optimization problem by a proximal bundle algorithm applying Lagrangian decomposition. The results indicate that appropriate block-separable reformulations of MIQQPs could accelerate the running time of dual solution algorithms considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Kluwer Academic Publishers, 1999

  2. Al-Khayyal, F.A., Larsen, C., van Voorhis, T.: A relaxation method for nonconvex quadratically constrained quadratic programs. J. Glob. Opt. 6, 215–230 (1995)

    MATH  MathSciNet  Google Scholar 

  3. Al-Khayyal, F.A., van Voorhis, T.: Accelerating convergence of branch-and-bound algorithms for quadratically constrained optimization problems. In: State of the Art in Global Optimization: Computational Methods and Applications, C.A. Floudas, (ed.), Kluwer Academic Publishers, 1996

  4. Alperin, H., Nowak, I.: Lagrangian Smoothing Heuristics for MaxCut. Technical report, HU–Berlin NR–2002–6, 2002

  5. Balas, E., Ceria, S., Cornuejols, G.: A lift-and-project cutting plane algorithm for mixed 0-1 programs. Math. Progr. 58, 295–324 (1993)

    MathSciNet  Google Scholar 

  6. Bixby, R.E., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: MIP: theory and practice - closing the gap. In: Powell, M.J.D., Scholtes, S. (eds.), System Modelling and Optimization: Methods, Theory and Applications, pp. 19–49. Kluwer Academic Publishers, 2000.

  7. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib- A Collection of Test Models for Mixed-Iinteger Nonlinear Programming. INFORMS J. Comput. 15 (1), (2003)

  8. Chardaire, P., Sutter, A.: A decomposition method for quadratic zero-one programming. Manage. Sci. 41, 704–712 (1995)

    MATH  Google Scholar 

  9. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups. 2nd edn, Springer, New York, 1993

  10. Dantzig, G.B., Wolfe, P.: Decomposition principle for linear programs. Oper. Res. 8, 101–111 (1960)

    Article  MATH  Google Scholar 

  11. Demands, E.V., Tang, C.S.: Linear control of a Markov production system. Oper. Res. 40, 259–278 (1992)

    Google Scholar 

  12. Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)

    MATH  Google Scholar 

  13. Dür, M.: Dual bounding procedures lead to convergent Branch-and-Bound algorithms. Math. Progr. 91, 117–125 (2001)

    MATH  Google Scholar 

  14. Ferris, M.C., Horn, J.D.: Partitioning mathematical programs for parallel solution. Math. Progr. 80, 35–61 (1998)

    MathSciNet  Google Scholar 

  15. Filar, J.A., Schultz, T.A.: Bilinear programming and structured stochastic games. J. Opt. Theor. Appl. 53, 85–104 (1999)

    MathSciNet  Google Scholar 

  16. Fujisawa, K., Kojima, M., Nakata, K.: Exploiting sparsity in primal-dual interior-point methods for semidefinite programming. Math. Progr. 79, 235–254 (1997)

    MathSciNet  Google Scholar 

  17. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York, 1979

  18. Gomes, F., Sorensen, D.: ARPACK++: a C++ Implementation of ARPACK eigenvalue package, 1997: http://www.crpc.rice.edu/software/ARPACK/

  19. Guignard, M., Kim, S.: Lagrangian decomposition: a model yielding stronger Lagrangean bounds. Math. Progr. 39 (2), 215–228 (1987)

    MathSciNet  Google Scholar 

  20. Helmberg, C.: Semidefinite Programming for Combinatorial Optimization. Technical report, ZIB–Report 00–34, 2000

  21. Helmberg, C., Rendl, F.: A spectral bundle method for semidefinite programming. SIAM J. Opt 10 (3), 673–695 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I and II. Springer, Berlin, 1993

  23. Horst, R., Pardalos, P., Thoai, N.: Introduction to Global Optimization. Kluwer Academic Publishers, 1995

  24. Phan-huy-Hao, E.: Quadratically constrained quadratic programming: Some applications and a method for solution. ZOR 26, 105–119 (1982)

    MATH  MathSciNet  Google Scholar 

  25. Kim, S., Kojima, M.: Second Order Cone Programming Relaxation of Nonconvex Quadratic Optimization Problems. Technical report, Research Reports on Mathematical and Comuting Sciences, Series B: Operations Research, Tokyo Institute of Technology, 2000

  26. Kiwiel, K.C.: Proximity control in bundle methods for convex nondifferentiable minimization. Math. Progr. 46, 105–122 (1990)

    MATH  MathSciNet  Google Scholar 

  27. Kiwiel, K.C.: User’s Guide for NOA 2.0/3.0: A FORTRAN Package for Convex Nondifferentiable Optimization. Polish Academy of Science, System Research Institute, Warsaw, 1993/1994

  28. Kojima, M., Tunçel, L.: Discretization and localization in successive convex relaxation methods for nonconvex quadratic optimization problems. Math. Program. 89, 97–111 (2000)

    MathSciNet  Google Scholar 

  29. Lemaréchal, C., Renaud, A.: A geometric study of duality gaps, with applications. Math. Progr. 90, 399–427 (2001)

    MATH  Google Scholar 

  30. Martin, A.: Integer programs with block structure. Technical report, ZIB–Report 99–03, Habilitationsschrift, 1999

  31. Nesterov, Y., Wolkowicz, H., Ye, Y.: Semidefinite programming relaxaxations of nonconvex quadratic optimization. In: Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.), Handbook of Semidefinite Programming, Kluwer Academic Publishers, 2000, pp. 361–419

  32. NETLIB: EISPACK: http://www.netlib.org/eispack/ 1972-1973

  33. Neumaier, A.: Constrained Global Optimization. In: COCONUT Deliverable D1, Algorithms for Solving Nonlinear Constrained and Optimization Problems: The State of The Art, pp. 55–111. http://www.mat.univie.ac.at/∼neum/glopt/coconut/StArt.html, 2001

  34. Nowak, I.: Dual bounds and optimality cuts for all-quadratic programs with convex constraints. J. Glob. Opt. 18, 337–356 (2000)

    MATH  Google Scholar 

  35. Nowak, I., Alperin, H., Vigerske, S.: LaGO - An object oriented library for solving MINLPs. In: Bliek, C., Jermann, C., Neumaier, A. (eds.), Global Optimization and Constraint Satisfaction, pp. 32–42. Springer, Berlin, 2003. http://www.mathematik.hu-berlin.de/∼eopt/papers/LaGO.pdf

  36. Parrilo, P., Sturmfels, B.: Minimizing polynomial functions. To appear in DIMACS volume of the Workshop on Algorithmic and Quantitative Aspects of Real Algebraic Geometry in Mathematics and Computer Science, 2001

  37. Phing, T.Q., Tao, P.D., Hoai An, L.T.: A method for solving D. C. programming problems, application to fuel mixture nonconvex optimization problems. J. Global Opt. 6, 87–105 (1994)

    Google Scholar 

  38. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for (0,1)-quadratic programming. J. Global Opt. 7 (1), 51–73 (1995)

    MathSciNet  Google Scholar 

  39. Rendl, F., Wolkowicz, H.: A semidefinite framework for trust region subproblems with applications to large scale minimization. Math. Progr. 77 (2), 273–299 (1997)

    MathSciNet  Google Scholar 

  40. Ruszczyński, A.: Decomposition methods in stochastic programming. Math. Progr. 79, 333–353 (1997)

    Google Scholar 

  41. Rutenberg, D.P., Shaftel, T.L.: Product design: sub-assemblies for multiple markets. Manage. Sci. 18, B220–B231 (1971)

    Google Scholar 

  42. Stern, R., Wolkowicz, H.: Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Opt. 5 (2), 286–313 (1995)

    Google Scholar 

  43. Thoai, N.: Duality bound method for the general quadratic programming problem with quadratic constraints. J. Optim. Theor. Appl. 107 (2), (2000)

  44. Visweswaran, V., Floudas, C.A.: A global optimization algorithm (GOP) for certain classes of nonconvex NLPs : II. Application of theory and test problems. Comp. Chem. Eng. 1990

  45. Weintraub, A., Vera, J.: A cutting plane approach for chance-constrained linear programs. Oper. Res. 39, 776–785 (1991)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Nowak.

Additional information

The work was supported by the German Research Foundation (DFG) under grant NO 421/2-1

Mathematics Subject Classification (2000): 90C22, 90C20, 90C27, 90C26, 90C59

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowak, I. Lagrangian decomposition of block-separable mixed-integer all-quadratic programs. Math. Program. 102, 295–312 (2005). https://doi.org/10.1007/s10107-003-0500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0500-9

Keywords

Navigation