Skip to main content
Log in

\({\cal U}{\cal V}\)-theory of a Class of Semidefinite Programming and Its Applications

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper we study optimization problems involving convex nonlinear semidefinite programming (CSDP). Here we convert CSDP into eigenvalue problem by exact penalty function, and apply the \({\cal U}\)-Lagrangian theory to the function of the largest eigenvalues, with matrix-convex valued mappings. We give the first-and second-order derivatives of \({\cal U}\)-Lagrangian in the space of decision variables Rm when transversality condition holds. Moreover, an algorithm frame with superlinear convergence is presented. Finally, we give one application: bilinear matrix inequality (BMI) optimization; meanwhile, list their \({\cal U}{\cal V}\) decomposition results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, F. Interior-point methods in semi-definite programming with applications to combinatorial optimization. SIAM J. Optim., 5: 13–51 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apkarian, P., Noll, D., Thevenet, J.-B., Tuan, H. D. A spectral quadratic-SDP method with applications to fixed-order H2 and synthesis. Eur. J. Control, 10: 527–538 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bertsekas, D.P., Nedic, A., Ozdaglar, A.E. Convex Analysis and Optimization. Athena Scientific and Tsinghua University Press, Beijing, 2003

    MATH  Google Scholar 

  4. Bonnans, J.F., Shapiro, A. Perturbation Analysis of Optimization Problems. Springer-Verlag, New York, 2000

    Book  MATH  Google Scholar 

  5. Candès, E.J., Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math., 9: 717–772 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hicks, N.J. Notes on Differential Geometry. Van Nostrand, Princeton, NJ, 1965

    MATH  Google Scholar 

  7. Helmberg, C., Rendl, F., Weismantel, R. A semidefinite programming approach to the quadratic knapsack problem. J. Comb. Optim., 4: 197–215 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hiriart-Urruty, J.-B., Lemaréchal, C. Convex Analysis and Minimization Algorithms. Springer-Verlag, Berlin, 1993

    Book  MATH  Google Scholar 

  9. Hiriart-Urruty, J.-B., Ye, D. Sensivity analysis of all eigenvalues of a symmetric matrix. Numer. Math., 70: 45–72 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, M, Pang, L.P., Xia, Z.Q. The space decomposition theory for a class of eigenvalue optimizations. Comput. Optim. Appl., 58 (2): 423–454 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Huang, M, Pang, L.P., Liang, X.J., Meng, F.Y. A second-order bundle method based on \({\cal V}{\cal U}\)-decomposition strategy for a special class of eigenvalue optimizations. Numer. Func. Anal. Optim., 37(5): 554–582 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huang, M, Lu, Y., Pang, L.P., Xia, Z.Q. A space decomposition scheme for maximum eigenvalue functions and its applications. Math. Meth. Oper. Res., 85 (3): 453–490 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Huang, M, Pang, L.P., Lu, Y., Xia, Z.Q. A fast space-decomposition scheme for nonconvex eigenvalue optimization. Set. Val. Var. Anal., 25: 43–67 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Huang, M, Liang, X.J., Pang, L.P., Lu, Y. The bundle scheme for solving arbitrary eigenvalue optimizations. J. Indus. Man. Optim., 13(2): 659–680 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, M, Lin, S.D., Yuan, J.L., Gong, Z.H., Liang, X.J. A \({\cal V}{\cal U}\)-decomposition technique for a class of eigenvalue optimizations. Pac. J. Optim., 16(1): 129–147 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Huang, M, Cheng, C., Li, Y., Xia, Z.Q. The space decomposition method for the sum of nonlinear convex maximum eigenvalues and its applications. J. Indus. Man. Optim., 16(4): 1885–1905 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kato, T. Perturbation Theory for Linear Operators. Springer-Verlag, New York, 1980

    MATH  Google Scholar 

  18. Klerk, E.de. Aspects of Semi-definite Programming: Interior Point Algorithms and Selected Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002

    Book  MATH  Google Scholar 

  19. Kortanek, K.O., Zhang, Q.H. Perfect duality in semi-infinite programming and semi-definite programming. Math. Program. Ser. A, 91: 127–144 (2001)

    Article  MATH  Google Scholar 

  20. Lemaréchal, C., Oustry, F., Sagastizábal, C. The \({\cal U}\)-Lagrangian of a convex function. Trans. Am. Math. Soc., 352 (2): 711–729 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lemaréchal, C., Sagastizábal, C. More than first-order developments of convex function: primal-dual relations. J. Convex Anal., 3 (2): 1–14 (1996)

    MathSciNet  Google Scholar 

  22. Lewis, A.S., Overton, M.L., Eigenvalue optimization. Acta Numer., 5: 149–190 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, S.J., Yang, X.Q., Teo, K.L. Duality for semi-definite and semi-infinite programming. Optimization, 52: 507–528 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mangasarian, O.L., Sufficiency of exact penalty minimization. SIAM J. Control. Optim., 23 (1): 30–37 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mifflin, R., Sagastizábal, C. On \({\cal V}{\cal U}\)-theory for functions with primal-dual gradient structure. SIAM J. Optim., 352: 547–571 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mifflin, R., Sagastizábal, C. \({\cal V}{\cal U}\)-smoothness and proximal point results for some nonconvex functions. Optim. Methods Softw., 19 (5): 463–478 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mifflin, R., Sagastizábal, C. A \({\cal V}{\cal U}\)-algorithm for convex minimization. Math. Program. Ser.B, 104: 583–608 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Noll, D., Torki, M., Apkarian, P. Partially augmented Lagrangian method for matrix inequality constraints. SIAM J. Optim., 15: 161–184 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nesterov, Y.E., Todd, M.J. Self-scaled barries and interior-point methods for convex programming. Math. Oper. Res., 22 (1): 1–42 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nesterov, Y.E., Todd, M.J. Primal-dual interior-point methods for self-scaled cones. SIAM J. Optim., 8 (2): 324–364 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Oustry, F. The \({\cal U}\)-Lagrangian of the maximum eigenvalue functions. SIAM J. Optim., 9: 526–549 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Oustry, F. A second-order bundle method to minimize the maximum eigenvalue function. Math. Program. Ser.A, 89: 1–33 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Overton, M.L. Large-scale optimization of eigenvalues. SIAM J. Optim., 2 (1): 88–120 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Overton, M.L., Womersley, R.S. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices. Math. Program., 62: 321–357 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  35. Overton, M.L., Womersley, R.S. Second derivatives for optimizing eigenvalues of symmetric matrices. SIAM J. Matrix Anal., 16 (3): 667–718 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Peng, J., Roos, C., Terlaky, T. Self-regular functions and new search directions for linear and semi-definite optimization. Math. Program., 93: 129–171 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shapiro, A., Fan, M.K.H. On eigenvalue optimization. SIAM J. Optim., 5 (3): 552–568 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shapiro, A. First and second order analysis of nonlinear semidefinite programs. Math. Program. Ser.B, 77: 301–320 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Vandenberghe, L., Boyd, S. Semidefinite programming. SIAM Rev., 38: 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, G.Q., Bai, Y.Q. A new primal-dual path-following interior-point algorithm for semi-definite optimization. J. Math. Anal. Appl., 353 (1): 339–349 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wolkowicz, H., Saigal, R., Vandenberghe, L. Handbook of Semi-definite Programming, Theory, Algorithms, and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000

    MATH  Google Scholar 

  42. Zhang, Q.H. Uniform LP duality for semi-definite and semi-infinite programming. Cent. Eur. J. Oper. Res., 16 (2): 205–213 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, Y. On extending some primal-dual interior-point algorithms from linear programming to semidefinite programming. SIAM J. Optim., 8: 365–386 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their constructive criticism that helped to improve the presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Huang.

Additional information

This paper is supported by the National Natural Science Foundation of China (Nos. 11701063, 11901075); the Project funded by China Postdoctoral Science Foundation (Nos. 2019M651091, 2019M661073); the Fundamental Research Funds for the Central Universities (Nos. 3132021193, 3132021199); the Natural Science Foundation of Liaoning Province in China (Doctoral Startup Foundation of Liaoning Province in China (Nos. 2020-BS-074); Dalian Youth Science and Technology Star (No.2020RQ047); Huzhou Science and Technology Plan (No.2016GY03); Key Research and Development Projects of Shandong Province (No. 2019GGX104089); and the Natural Science Foundation of Shandong Province (No. ZR2019BA014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Yuan, Jl., Pang, Lp. et al. \({\cal U}{\cal V}\)-theory of a Class of Semidefinite Programming and Its Applications. Acta Math. Appl. Sin. Engl. Ser. 37, 717–737 (2021). https://doi.org/10.1007/s10255-021-1037-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-021-1037-5

Keywords

2000 MR Subject Classification

Navigation