Skip to main content
Log in

Computing mountain passes and transition states

  • Published:
Mathematical Programming Submit manuscript

Abstract.

The mountain-pass theorem guarantees the existence of a critical point on a path that connects two points separated by a sufficiently high barrier. We propose the elastic string algorithm for computing mountain passes in finite-dimensional problems and analyze the convergence properties and numerical performance of this algorithm for benchmark problems in chemistry and discretizations of infinite-dimensional variational problems. We show that any limit point of the elastic string algorithm is a path that crosses a critical point at which the Hessian matrix is not positive definite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A.: Elliptic equations with jumping nonlinearities. J. Math. Phys. Sci. 18, 1–12 (1984)

    MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A., Rabinowitz, P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    MATH  Google Scholar 

  3. Aubin, J.-P., Ekeland, I.: Applied Nonlinear Analysis. John Wiley & Sons, 1984

  4. Bell, S., Crighton, J.S., Fletcher, R.: A new efficient method for locating saddle points. Chem. Phys. Lett. 82, 122–126 (1982)

    Article  Google Scholar 

  5. Byrd, R., Hribar, M., Nocedal, J.: An interior point method for large scale nonlinear programming. SIAM J. Optim. 9, 877–900 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caklovic, L., Li, S., Willem, M.: A note on Palais-Smale condition and coercivity. Diff. Integral Eqs. 3, 799–800 (1990)

    MATH  Google Scholar 

  7. Chen, G., Zhou, J., Ni, W.: Algorithms and visualization for solutions of nonlinear elliptic equations. Internat. J. Bifur. Chaos. 10, 1565–1612 (2000)

    Article  Google Scholar 

  8. Choi, Y.S., McKenna, P.J.: A mountain pass method for the numerical solution of semilinar elliptic problems. Nonlinear Anal. 20, 417–437 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, Z., Costa, D., Chen, G.: A high-linking algorithm for sign-changing solutions of semilinear elliptic equations. Nonlinear Anal. 38, 151–172 (1999)

    Article  MathSciNet  Google Scholar 

  10. Ekeland, I.: Convexity Methods in Hamiltonian Mechanics. Springer-Verlag, 1990

  11. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, second ed., 2002

  12. Henkelman, G., Jóhannesson, G., Jónsson, H.: Methods for finding saddle points and minimum energy paths. In: Progress in Theoretical Chemistry and Physics. S.D. Schwartz, (ed.), Vol. 5, Kluwer, 2000

  13. Lawrence, C.T., Tits, A.L.: A computationally efficient feasible sequential quadratic programming algorithm. SIAM J. Optim. 11, 1092–1118 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, Y., Zhou, J.: A minimax method for finding multiple critical points and its applications to semilinear PDEs. SIAM J. Sci. Comput. 23, 840–865 (2001)

    Google Scholar 

  15. Li, Y., Zhou, J.: Convergence results of a local minimax method for finding multiple critical points. SIAM J. Sci. Comput. 24, 865–885 (2002)

    Google Scholar 

  16. Mawhin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer-Verlag, 1989

  17. National Research Council.: Mathematical Challenges from Theoretical and Computational Chemistry. National Academy Press, 1995

  18. NEOS Server for Optimization Problems.: See www-neos.mcs.anl.gov

  19. Struwe, M.: Variational Methods. Springer-Verlag, 2000

  20. Vanderbei, R.J.: LOQO user’s manual – Version 3.10. Opt. Meth. Softw. 12, 485–514 (1999)

  21. Willem, M.: Minimax Theorems. Birkäuser, 1996

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge J. Moré.

Additional information

This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-Eng-38.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moré, J., Munson, T. Computing mountain passes and transition states. Math. Program., Ser. B 100, 151–182 (2004). https://doi.org/10.1007/s10107-003-0489-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-003-0489-0

Keywords

Navigation