Skip to main content
Log in

Persistent Non-statistical Dynamics in One-Dimensional Maps

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study a class \(\widehat{{\mathfrak {F}}}\) of one-dimensional full branch maps introduced in Coates et al. (Commun Math Phys 402(2):1845–1878, 2023), admitting two indifferent fixed points as well as critical points and/or singularities with unbounded derivative. We show that \(\widehat{{\mathfrak {F}}}\) can be partitioned into 3 pairwise disjoint subfamilies \(\widehat{{\mathfrak {F}}} = {\mathfrak {F}} \cup {\mathfrak {F}}_\pm \cup {\mathfrak {F}}_*\) such that all \(g \in {\mathfrak {F}}\) have a unique physical measure equivalent to Lebesgue, all \(g \in {\mathfrak {F}}_{\pm }\) have a physical measure which is a Dirac-\(\delta \) measure on one of the (repelling) fixed points, and all \(g \in {\mathfrak {F}}_{*}\) are non-statistical and in particular have no physical measure. Moreover we show that these subfamilies are intermingled: they can all be approximated by maps in the other subfamilies in natural topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Notice that we can “normalize” this extended metric to give a standard bounded metric on \( \widehat{{\mathfrak {F}}} \) by defining \( {\tilde{d}}_r ( f, g ) :={ {\tilde{d}}_{r} ( f,g ) }/{(1 + {\tilde{d}}_{r} (f, g ))} \) when \( d_{r} ( f,g )< \infty \) and \( {\tilde{d}}_{r} ( f,g ) :=1 \) otherwise. The metrics \( d_{r}\) and \( \tilde{d}_{r}\) lead to equivalent topologies and so for our purposes it does not really matter which one we use.

References

  1. Aaronson, J., Denker, M.: Local limit theorems for partial sums of stationary sequences generated by Gibbs–Markov maps. Stoch. Dyn. 1(2), 193–237 (2001). https://doi.org/10.1142/S0219493701000114

    Article  MathSciNet  Google Scholar 

  2. Aaronson, J., Thaler, M., Zweimüller, R.: Occupation times of sets of infinite measure for ergodic transformations. Ergod. Theory Dyn. Syst. (2005)

  3. Alves, J.F.: Nonuniformly hyperbolic attractors. Geometric and probabilistic aspects. In: Springer Monographs in Mathematics. Springer International Publishing (2020)

  4. Alves, J.F., Dias, C.L., Luzzatto, S., Pinheiro, V.: SRB measures for partially hyperbolic systems whose central direction is weakly expanding. J. Eur. Math. Soc. (JEMS) 19(10), 2911–2946 (2017)

    MathSciNet  Google Scholar 

  5. Alves, J.F., Luzzatto, S., Pinheiro, V.: Markov structures and decay of correlations for nonuniformly expanding dynamical systems. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(6), 817–839 (2005)

  6. Andersson M., Guihéneuf, P.-A.: Historic behaviour vs. physical measures for irrational flows with multiple stopping points. Adv. Math. 409 (2022)

  7. Anosov, D.V., Sinai, Y.G.: Some smooth ergodic systems. Russ. Math. Surv. 103 (1967)

  8. Araújo, V., Luzzatto, S., Viana, M.: Invariant measures for interval maps with critical points and singularities. Adv. Math. 221(5), 1428–1444 (2009)

    MathSciNet  Google Scholar 

  9. Araújo, V., Pinheiro, V.: Abundance of wild historic behavior. Bull. Braz. Math. Soc. New Ser. 52 (2021)

  10. Bachurin, P.S.: The connection between time averages and minimal attractors. Russ. Math. Surv. 54(6), 1233–1235 (1999)

    MathSciNet  Google Scholar 

  11. Bahsoun, W., Galatolo, S., Nisoli, I., Niu, X.: A rigorous computational approach to linear response. Nonlinearity 31 (2018)

  12. Bahsoun, W, Saussol, B.: Linear response in the intermittent family: differentiation in a weighted \(c^{0}\)-norm. Discrete Contin. Dyn. Syst. (2016)

  13. Baladi, V., Todd, M.: Linear response for intermittent maps. Commun. Math. Phys. 347, 857–874 (2016)

    ADS  MathSciNet  Google Scholar 

  14. Barrientos, P.G., Kiriki, S., Nakano, Y., Raibekas, A., Soma, T.: Historic behavior in non-hyperbolic homoclinic classes. Proc. Am. Math. Soc. 148, 1195–1206 (2020)

    Google Scholar 

  15. Berger, P., Biebler, S.: Emergence of wandering stable components. J. Am. Math. Soc. 36 (2022)

  16. Birkhoff, G.D.: Proof of the ergodic theorem. Proc. Natl. Acad. Sci. USA 17(12), 656–660 (1931)

    ADS  Google Scholar 

  17. Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. In: Lecture Notes in Mathematics, vol. 470. Springer, Berlin (1975)

  18. Bruin, H., Leplaideur, R.: Renormalization, thermodynamic formalism and quasi-crystals in subshifts. Commun. Math. Phys. 321(1), 209–247 (2013)

    ADS  MathSciNet  Google Scholar 

  19. Bruin, H., Terhesiu, D., Todd, M.: The pressure function for infinite equilibrium measures. Isr. J. Math. 232(2), 775–826 (2019)

    MathSciNet  Google Scholar 

  20. Burguet, D.: SRB measures for C. surface diffeomorphisms. Preprint (2021)

  21. Buzzi, J.: Absolutely continuous invariant probability measures for arbitrary expanding piecewise r-analytic mappings of the plane. Ergod. Theory Dyn. Syst. 20(3), 697–708 (2000)

    MathSciNet  Google Scholar 

  22. Buzzi, J., Crovisier, S., Sarig, O.: Another proof of Burguet’s existence theorem for SRB measures of c. surface diffeomorphisms. Preprint (2022)

  23. Campanino, M., Isola, S.: Statistical properties of long return times in type I intermittency. Forum Mathematicum 7(7) (1995)

  24. Climenhaga, V., Luzzatto, S., Pesin, Y.: The geometric approach for constructing Sinai–Ruelle–Bowen measures. J. Stat. Phys. 166 (2017)

  25. Campanino, M., Isola, S.: SRB measures and young towers for surface diffeomorphisms. Ann. Henri Poincaré 23 (2023)

  26. Coates, D., Holland, M., Terhesiu, D.: Limit theorems for wobbly interval intermittent maps. Stud. Math 261(3), 269–305 (2019). https://doi.org/10.4064/sm200427-21-11

    Article  MathSciNet  Google Scholar 

  27. Coates, D., Luzzatto, S., Muhammad, M.: Doubly intermittent full branch maps with critical points and singularities. Commun. Math. Phys. 402(2), 1845–1878 (2023)

    ADS  MathSciNet  Google Scholar 

  28. Colli, E., Vargas, E.: Non-trivial wandering domains and homoclinic bifurcations. Ergod. Theory Dyn. Syst. (2001)

  29. Cristadoro, G., Haydn, N., Marie, P., Vaienti, S.: Statistical properties of intermittent maps with unbounded derivative. Nonlinearity (2010)

  30. Crovisier, S., Yang, D., Zhang, J.: Empirical measures of partially hyperbolic attractors. Commun. Math. Phys. (2020)

  31. Cui, H.: Invariant densities for intermittent maps with critical points. J. Differ. Equ. Appl. 27(3), 404–421 (2021)

    MathSciNet  Google Scholar 

  32. Diaz-Ordaz, K., Holland, M., Luzzatto, S.: Statistical properties of one-dimensional maps with critical points and singularities. Stoch. Dyn. 6(4) (2006)

  33. Dolgopyat, D.: Prelude to a kiss. Mod. Dyn. Syst. Appl. 313–324 (2004)

  34. Duan, Y.: ACIM for random intermittent maps: existence, uniqueness and stochastic stability. Dyn. Syst. (2012)

  35. Fisher, A.M., Lopes, A.: Exact bounds for the polynomial decay of correlation, 1/fnoise and the CLT for the equilibrium state of a non-hölder potential. Nonlinearity 14(5), 1071–1104 (2001)

    ADS  MathSciNet  Google Scholar 

  36. Freitas, A.C.M., Freitas, J.M., Todd, M.: The compound Poisson limit ruling periodic extreme behaviour of non-uniformly hyperbolic dynamics. Commun. Math. Phys. 321(2), 483–527 (2013)

    ADS  MathSciNet  Google Scholar 

  37. Freitas, A.C.M., Freitas, J.M., Todd, M., Vaienti, S.: Rare events for the Manneville–Pomeau map. Stoch. Process. Appl. 126(11), 3463–3479 (2016)

    MathSciNet  Google Scholar 

  38. Froyland, G., Murray, R., Stancevic, O.: Spectral degeneracy and escape dynamics for intermittent maps with a hole. Nonlinearity 24(9), 2435–2463 (2011)

    ADS  MathSciNet  Google Scholar 

  39. Galatolo, S., Holland, M., Persson, T., Zhang, Y.: Anomalous time-scaling of extreme events in infinite systems and Birkhoff sums of infinite observables. Discrete Contin. Dyn. Syst. (2021)

  40. Gouzel, S.: Characterization of weak convergence of Birkhoff sums for Gibbs–Markov maps. Isr. J. Math. 180, 1–41 (2010). https://doi.org/10.1007/s11856-010-0092-z

    Article  MathSciNet  Google Scholar 

  41. Herman, M.: An example of non-convergence of Birkhoff sums. Notes inachevées de Michael R. Herman sélectionnées par Jean-Christophe Yoccoz (2018)

  42. Hofbauer, F., Keller, G.: Quadratic maps without asymptotic measure. Commun. Math. Phys. 127(2), 319–337 (1990)

    ADS  MathSciNet  Google Scholar 

  43. Hofbauer, F., Keller, G.: Quadratic maps with maximal oscillation. Algorithms Fract. Dyn. 89–94 (1995)

  44. Hu, H., Young, L.-S.: Nonexistence of SBR measures for some diffeomorphisms that are ‘almost anosov’. Ergod. Theory Dyn. Syst. 15 (1995)

  45. Inoue, T.: Sojourn times in small neighborhoods of indifferent fixed points of one-dimensional dynamical systems. Ergod. Theory Dyn. Syst. 20 (2000)

  46. Järvenpää, E., Tolonen, T.: Natural ergodic measures are not always observable. University of Jyväskylä (2005)

  47. Kanagawa, H., Kiriki, S., Li, M.-C.: Geometric Lorenz flows with historic behaviour. Discrete Contin. Dyn. Syst. 36(12), 7021–7028 (2016)

    MathSciNet  Google Scholar 

  48. Keller, G.: Completely mixing maps without limit measure. Colloquium Math. 100(1), 73–76 (2004)

    ADS  MathSciNet  Google Scholar 

  49. Kiriki, S., Li, M.-C., Soma, T.: Coexistence of invariant sets with and without SRB measures in Henon family. Nonlinearity 23(9), 2253–2269 (2010)

    ADS  MathSciNet  Google Scholar 

  50. Kiriki, S., Li, X., Nakano, Y., Soma, T.: Abundance of observable Lyapunov irregular sets. Commun. Math. Phys. 1–29 (2022)

  51. Kiriki, S., Nakano, Y., Soma, T.: Historic behaviour for nonautonomous contraction mappings. Nonlinearity 32, 1111–1124 (2019)

    ADS  MathSciNet  Google Scholar 

  52. Kiriki, S., Nakano, Y., Soma, T.: Historic and physical wandering domains for wild blender-horseshoes. Nonlinearity 36(8), 4007–4033 (2021). https://mathscinet-ams-org.uoelibrary.idm.oclc.org/mathscinet-getitem?mr=4608772

  53. Kiriki, S., Nakano, Y., Soma, T.: Emergence via non-existence of averages. Adv. Math. 400, 1–30 (2022)

    MathSciNet  Google Scholar 

  54. Kiriki, S., Soma, T.: Takens’ last problem and existence of non-trivial wandering domains. Adv. Math. (2017)

  55. Kleptsyn, V.A.: An example of non-coincidence of minimal and statistical attractors. Ergod. Theory Dyn. Syst. 26 (2006)

  56. Korepanov, A.: Linear response for intermittent maps with summable and nonsummable decay of correlations. Nonlinearity (2016)

  57. Labouriau, I.S., Rodrigues, A.A.P.: On Takens’ last problem: tangencies and time averages near heteroclinic networks. Nonlinearity 30, 1876–1910 (2017)

    ADS  MathSciNet  Google Scholar 

  58. Lasota, A., Yorke, J.A.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Am. Math. Soc. 186, 481–488 (1973)

    MathSciNet  Google Scholar 

  59. Liverani, C., Saussol, B., Vaienti, S.: A probabilistic approach to intermittency. Ergod. Theory Dyn. Syst. 19(3), 671–685 (1999)

    MathSciNet  Google Scholar 

  60. Melbourne, I.: Large and moderate deviations for slowly mixing dynamical systems. Proc. Am. Math. Soc. 137(5), 1735–1741 (2008)

    MathSciNet  Google Scholar 

  61. Melbourne, I., Terhesiu, D.: First and higher order uniform dual ergodic theorems for dynamical systems with infinite measure. Isr. J. Math. 194(2), 793–830 (2012)

    MathSciNet  Google Scholar 

  62. Nicol, M., Tōrōk, A., Vaienti, S.: Central limit theorems for sequential and random intermittent dynamical systems. Ergod. Theory Dyn. Syst. 38(3), 1127–1153 (2016)

    MathSciNet  Google Scholar 

  63. Nolan, J.P.: Univariate Stable Distributions: Models for Heavy Tailed Data. Springer (2020)

  64. Karabacak, Ō., Ashwin, P.: On statistical attractors and the convergence of time averages. Math. Proc. Camb. Philos. Soc. 150 (2011)

  65. Palis, J.: Open questions leading to a global perspective in dynamics. Nonlinearity 21(4) (2008)

  66. Palis, J.: Open questions leading to a global perspective in dynamics (corrigendum). Nonlinearity 28(3) (2015)

  67. Petrov, V.V.: A note on the Borel–Cantelli lemma. Stat. Probab. Lett. 58(3), 283–286 (2002)

    MathSciNet  Google Scholar 

  68. Pianigiani, G.: First return map and invariant measures. Isr. J. Math. 35(1–2), 32–48 (1980)

    MathSciNet  Google Scholar 

  69. Pinheiro, V.: Sinai–Ruelle–Bowen measures for weakly expanding maps. Nonlinearity 19(5), 1185–1200 (2006)

    ADS  MathSciNet  Google Scholar 

  70. Pollicott, M., Sharp, R.: Large deviations for intermittent maps. Nonlinearity 22(9), 2079–2092 (2009)

    ADS  MathSciNet  Google Scholar 

  71. Pollicott, M., Weiss, H.: Multifractal analysis of lyapunov exponent for continued fraction and Manneville–Pomeau transformations and applications to diophantine approximation. Commun. Math. Phys. 207(1), 145–171 (1999)

    ADS  MathSciNet  Google Scholar 

  72. Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189–197 (1980)

    ADS  MathSciNet  Google Scholar 

  73. Ruelle, D.: A measure associated with axiom-A attractors. Amer. J. Math. 98(3), 619–654 (1976)

    MathSciNet  Google Scholar 

  74. Ruziboev, M.: Decay of correlations for invertible systems with non-hölder observables. Dyn. Syst. (2015)

  75. Ruziboev, M.: Almost sure rates of mixing for random intermittent maps. Differ. Equ. Dyn. Syst. (2018)

  76. Sarig, O.: Phase transitions for countable Markov shifts. Commun. Math. Phys. 217(3), 555–577 (2001)

    ADS  MathSciNet  Google Scholar 

  77. Sawyer, S.: Maximal inequalities of weak type. Ann. Math. 84 (1966)

  78. Shen, W., van Strien, S.: On stochastic stability of expanding circle maps with neutral fixed points. Dyn. Syst. 28(3), 423–452 (2013)

    MathSciNet  Google Scholar 

  79. Sinai, Y.G.: Gibbs measures in ergodic theory. Uspehi Mat. Nauk 27(4), 21–64 (1972)

    MathSciNet  Google Scholar 

  80. Takens, F.: Heteroclinic attractors: time averages and moduli of topological conjugacy. Bull. Braz. Math. Soc. 25 (1994)

  81. Takens, F.: Orbits with historic behaviour, or nonexistence of averages. Nonlinearity 21 (2008)

  82. Talebi, A.: Statistical (in)stability and non-statistical dynamics. Preprint (2020)

  83. Talebi, A.: Non-statistical rational maps. Math. Z. (2022)

  84. Terhesiu, D.: Improved mixing rates for infinite measure-preserving systems. Ergod. Theory Dyn. Syst. 35(2), 585–614 (2013)

    MathSciNet  Google Scholar 

  85. Terhesiu, D.: Mixing rates for intermittent maps of high exponent. Probab. Theory Relat. Fields 166(3–4), 1025–1060 (2015)

    MathSciNet  Google Scholar 

  86. Thaler, M.: Estimates of the invariant densities of endomorphisms with indifferent fixed points. Isr. J. Math. 37(4), 303–314 (1980)

    MathSciNet  Google Scholar 

  87. Thaler, M.: Transformations on [0, 1] with infinite invariant measures. Isr. J. Math. 46(1–2), 67–96 (1983)

    MathSciNet  Google Scholar 

  88. Thaler, M.: The invariant densities for maps modeling intermittency. J. Stat. Phys. 79(3–4), 739–741 (1995)

    ADS  MathSciNet  Google Scholar 

  89. Thaler, M.: A limit theorem for the perron-frobenius operator of transformations on [0, 1] with indifferent fixed points. Isr. J. Math. 91(1–3), 111–127 (1995)

    MathSciNet  Google Scholar 

  90. Thaler, M.: The asymptotics of the perron-frobenius operator of a class of interval maps preserving infinite measures. Studia Math. 143(2), 103–119 (2000)

    MathSciNet  Google Scholar 

  91. Thaler, M.: Asymptotic distributions and large deviations for iterated maps with an indifferent fixed point. Stoch. Dyn. 05(03), 425–440 (2005)

    MathSciNet  Google Scholar 

  92. Tsujii, M.: Absolutely continuous invariant measures for piecewise real-analytic expanding maps on the plane. Commun. Math. Phys. 208(3), 605–622 (2000)

    ADS  MathSciNet  Google Scholar 

  93. Tsujii, M.: Absolutely continuous invariant measures for expanding piecewise linear maps. Invent. Math. 143(2), 349–373 (2001)

    ADS  MathSciNet  Google Scholar 

  94. Tsujii, M.: Physical measures for partially hyperbolic surface endomorphisms. Acta Math. 194(1), 37–132 (2005)

    MathSciNet  Google Scholar 

  95. Veconi, D.: SRB measures of singular hyperbolic attractors. Discrete Contin. Dyn. Syst. 42 (2022)

  96. Young, L.-S.: Recurrence times and rates of mixing. Isr. J. Math. 110, 153–188 (1999)

    MathSciNet  Google Scholar 

  97. Zweimüller, R.: Ergodic structure and invariant densities of non-Markovian interval maps with indifferent fixed points. Nonlinearity 1263 (1998)

  98. Zweimüller, R.: Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points. Ergod. Theory Dyn. Syst. 20(5), 1519–1549 (2000)

    MathSciNet  Google Scholar 

  99. Zweimüller, R.: Exact C. covering maps of the circle without (weak) limit measure. Colloquium Math. 93(2), 295–302 (2002)

  100. Zweimüller, R.: Stable limits for probability preserving maps with indifferent fixed points. Stoch. Dyn. 3(1), 83–99 (2003)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Coates.

Additional information

Communicated by E. Smith.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

D.C. was partially supported by the ERC project 692925 NUHGD and by the Abdus Salam ICTP visitors program.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coates, D., Luzzatto, S. Persistent Non-statistical Dynamics in One-Dimensional Maps. Commun. Math. Phys. 405, 102 (2024). https://doi.org/10.1007/s00220-024-04957-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00220-024-04957-0

Mathematics Subject Classification

Navigation