Skip to main content

Advertisement

Log in

Complex refractive index of freshly excised human breast tissue as a marker of disease

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

We report differences in the refractive index of healthy and tumorous freshly excised human breast tissue as determined from reflectance profile measurements at five wavelengths (432 nm, 532 nm, 633 nm, 964 nm, 1551 nm) in the visible and near-infrared using a standard prism-coupling refractometer. These refractive index differences, particularly in the near-infrared, can be used to distinguish fibroadenomas and cancerous growths not only from normal breast tissue but also from each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Giannios P, et al. (2016) Visible to near-infrared refractive properties of freshly-excised human-liver tissues: Marking hepatic malignancies. Scientific Reports 6:27910 EP. https://doi.org/10.1038/srep27910

    Article  Google Scholar 

  2. Giannios P et al (2017) Complex refractive index of normal and malignant human colorectal tissue in the visible and near-infrared. J Biophotonics 10(2):303–310. https://doi.org/10.1002/jbio.201600001

    Article  CAS  PubMed  Google Scholar 

  3. Tromberg BJ et al (2005) Imaging in breast cancer: Diffuse optics in breast cancer: detecting tumors in pre-menopausal women and monitoring neoadjuvant chemotherapy. Breast Cancer Res 7(6):279. https://doi.org/10.1186/bcr1358

    Article  PubMed  PubMed Central  Google Scholar 

  4. Volynskaya ZI et al (2008) Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J Biomed Opt 13(2):1–9. https://doi.org/10.1117/1.2909672

    Article  Google Scholar 

  5. Soares JS et al (2013) Diagnostic power of diffuse reflectance spectroscopy for targeted detection of breast lesions with microcalcifications. Proceedings of the National Academy of Sciences 110(2):471–476. https://doi.org/10.1073/pnas.1215473110, https://www.pnas.org/content/110/2/471

    Article  CAS  Google Scholar 

  6. Colak SB et al (1999) Clinical optical tomography and NIR spectroscopy for breast cancer detection. IEEE Journal of Selected Topics in Quantum Electronics 5(4):1143–1158. https://doi.org/10.1109/2944.796341, https://ieeexplore.ieee.org/abstract/document/796341

    Article  CAS  Google Scholar 

  7. Ashworth PC et al (2009) Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt Express 17(15):12444–12454. https://doi.org/10.1364/OE.17.012444, http://www.opticsexpress.org/abstract.cfm?URI=oe-17-15-12444

    Article  CAS  Google Scholar 

  8. Dobbs JL et al (2013) Feasibility of confocal fluorescence microscopy for real-time evaluation of neoplasia in fresh human breast tissue. Journal of Biomedical Optics 18(10):1–11. https://doi.org/10.1117/1.JBO.18.10.106016

    Article  Google Scholar 

  9. Abeytunge S et al (2017) Evaluation of breast tissue with confocal strip-mosaicking microscopy: a test approach emulating pathology-like examination. J Biomed Opt 22(3):1–11. https://doi.org/10.1117/1.JBO.22.3.034002

    Article  Google Scholar 

  10. Sardar DK et al (2007) Optical properties of ocular tissues in the near infrared region. Lasers Med Sci 22:46–52. https://doi.org/10.1007/s10103-006-0421-y

    Article  PubMed  Google Scholar 

  11. Patterson MS, Wilson BC, Wyman DR (1991) The propagation of optical radiation in tissue. II: Optical properties of tissues and resulting fluence distributions. Lasers Med Sci 6:379–390. https://doi.org/10.1007/BF02042460

    Article  Google Scholar 

  12. Calin MA, Parasca SV (2010) In vivo study of age-related changes in the optical properties of the skin. Lasers Med Sci 25:269–274. https://doi.org/10.1007/s10103-009-0725-9

    Article  PubMed  Google Scholar 

  13. Bosschaart N et al (2014) A literature review and novel theoretical approach on the optical properties of whole blood. Lasers Med Sci 29:453–479. https://doi.org/10.1007/s10103-013-1446-7

    Article  PubMed  Google Scholar 

  14. Wang Z, Popescu G, Tangella KV, Balla A (2011) Tissue refractive index as marker of disease. J Biomed Opt 16(11):1–8. https://doi.org/10.1117/1.3656732

    Article  CAS  Google Scholar 

  15. Bolin FP, Preuss LE, Taylor RC, Ference RJ (1989) Refractive index of some mammalian tissues using a fiber optic cladding method. Appl Opt 28(12):2297–2303. https://doi.org/10.1364/AO.28.002297, http://ao.osa.org/abstract.cfm?URI=ao-28-12-2297

    Article  CAS  Google Scholar 

  16. Ding H, Lu JQ, Wooden WA, Kragel PJ, Hu X-H (2006) Refractive indices of human skin tissues at eight wavelengths and estimated dispersion relations between 300 and 1600 nm. Phys Med Biol 51 (6):1479–1489. https://doi.org/10.1088/0031-9155/51/6/008

    Article  PubMed  Google Scholar 

  17. Jacques SL (2013) Optical properties of biological tissues: A review. Phys Med Biol 58(11):R37–R61. https://doi.org/10.1088/0031-9155/58/11/r37

    Article  PubMed  Google Scholar 

  18. Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38(15):2543–2555. https://doi.org/10.1088/0022-3727/38/15/004

    Article  CAS  Google Scholar 

  19. Zhernovaya O, Sydoruk O, Tuchin V, Douplik A (2011) The refractive index of human hemoglobin in the visible range. Phys Med Biol 56(13):4013–4021. https://doi.org/10.1088/0031-9155/56/13/017

    Article  CAS  PubMed  Google Scholar 

  20. Zysk AM, Chaney EJ, Boppart SA (2006) Refractive index of carcinogen-induced rat mammary tumours. Phys Med Biol 51(9):2165–2177. https://doi.org/10.1088/0031-9155/51/9/003

    Article  PubMed  Google Scholar 

  21. Matiatou M et al (2021) Data on the refractive index of freshly-excised human tissues in the visible and near-infrared spectral range. Results in Physics 22:103833. https://doi.org/10.1016/j.rinp.2021.103833

    Article  Google Scholar 

  22. Cassar Q et al (2018) Pilot study of freshly excised breast tissue response in the 300 – 600 GHz range. Biomed Opt Express 9(7):2930–2942. https://doi.org/10.1364/BOE.9.002930, http://www.osapublishing.org/boe/abstract.cfm?URI=boe-9-7-2930

    Article  CAS  Google Scholar 

  23. El-Shenawee M, Vohra N, Bowman T, Bailey K (2019) Cancer detection in excised breast tumors using terahertz imaging and spectroscopy. Biomedical Spectroscopy and Imaging 8:1–9. https://doi.org/10.3233/BSI-190187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vohra N, Bailey K, El-Shenawee M (2020) Terahertz experimental measurements of human breast tissue. 94th ARFTG Microwave Measurement Symposium (ARFTG), pp 1–4. https://doi.org/10.1109/ARFTG47584.2020.9071691, https://ieeexplore.ieee.org/document/9071691

  25. Zysk AM, Marks DL, Liu DY, Boppart SA (2007) Needle-based reflection refractometry of scattering samples using coherence-gated detection. Opt Express 8:4787–4794. https://doi.org/10.1364/OE.15.004787, http://www.osapublishing.org/oe/abstract.cfm?

    Article  Google Scholar 

  26. Zysk AM et al (2007) Needle-based refractive index measurement using low-coherence interferometry. Opt Lett 32:385–387. https://doi.org/10.1364/OL.32.000385

    Article  PubMed  Google Scholar 

  27. Zysk AM et al (2009) Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection. Technology in Cancer Research & Treatment 8(5):315–321. https://doi.org/10.1177/153303460900800501

    Article  Google Scholar 

  28. Sung H et al (2021) Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  29. Waks AG, Winer EP (2019) Breast cancer treatment. A Review JAMA 321(3):288–300. https://doi.org/10.1001/jama.2018.19323

    Article  CAS  PubMed  Google Scholar 

  30. Schmitt JM, Kumar G (1996) Turbulent nature of refractive-index variations in biological tissue. Opt Lett 21(16):1310–1312. https://doi.org/10.1364/OL.21.001310, http://ol.osa.org/abstract.cfm?URI=ol-21-16-1310

    Article  CAS  Google Scholar 

  31. Meeten G (1997) Refractive index errors in the critical-angle and the Brewster-angle methods applied to absorbing and heterogeneous materials. Meas Sci Technol 8(7):728. https://doi.org/10.1088/0957-0233/8/7/006

    Article  CAS  Google Scholar 

  32. Jin YL, Chen JY, Xu L, Wang PN (2006) Refractive index measurement for biomaterial samples by total internal reflection. Phys Med Biol 51(20):N371–N379. https://doi.org/10.1088/0031-9155/51/20/n02

    Article  CAS  PubMed  Google Scholar 

  33. Koutsoumpos S, Giannios P, Stavrakas I, Moutzouris K (2020) The derivative method of critical-angle refractometry for attenuating media. J Opt 22(7):075601. https://doi.org/10.1088/2040-8986/ab8286

    Article  Google Scholar 

  34. Li H, Xie S (1996) Measurement method of the refractive index of biotissue by total internal reflection. Appl Opt 35(10):1793–1795. https://doi.org/10.1364/AO.35.001793, http://ao.osa.org/abstract.cfm?URI=ao-35-10-1793

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Moutzouris.

Ethics declarations

For this study, IRB approval from the Administrative Board of the affiliated General Hospital and informed consent from all patients was obtained. All experiments were performed in compliance with the relevant laws and the institutional guidelines in accordance with the ethical standards of the Declaration of Helsinki.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matiatou, M., Giannios, P., Koutsoumpos, S. et al. Complex refractive index of freshly excised human breast tissue as a marker of disease. Lasers Med Sci 37, 2597–2604 (2022). https://doi.org/10.1007/s10103-022-03524-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-022-03524-0

Keywords

Navigation