Skip to main content
Log in

Evaluation of lipolysis and toxicological parameters of low-level laser therapy at different wavelengths and doses in the abdominal subcutaneous tissue

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Investigate the effects of low-level lasers therapy (LLLT) aiming abdominal lipolysis. Female Wistar rats received applications of LLLT directly in the abdominal skin twice a week (5 weeks). Except the control group (n = 5), animals received treatments with red wavelength 660 nm being (I) R3.3 group (n = 5): 3.3 J/cm2, and (II) R5 group (n = 5): 5 J/cm2, or infrared wavelength 808 nm being (III) IR3.3 group (n = 5): 3.3 J/cm2, and (IV) IR5 group (n = 5): 5 J/cm2. Abdominal subcutaneous and liver tissues were evaluated histologically. Levels of thiobarbituric acid reactive substances (TBARS) and catalase (CAT) activity were analyzed in liver tissue. In the peripheral blood aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides, and total cholesterol were investigated. Micronucleus assay was performed in the bone marrow. Except for the IR3.3 group, all treated groups reduced the body weight (p < 0.001). The R5 group reduced the abdominal subcutaneous tissue weight and thickness (p < 0.05), even though all treated groups reduced the number of adipocytes and its size (p < 0.001). No histological changes in the liver. There were no alterations in the triglycerides and LDL levels. The IR5 group increased the total cholesterol levels and decreased the HDL, ALT (both p < 0.05), and AST levels (p < 0.001). The group IR3.3 showed higher levels of ALP (p < 0.01). The R3.3 group increased the TBARS and CAT activity (p < 0.05). No mutagenic effects were found. The red laser treatment at 5 J/cm2 led to lipolysis and did not alter the liver’s parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. Pinto H (2015) Local fat treatments: classification proposal. Adipocyte 5(1):22–26. https://doi.org/10.1080/21623945.2015.1066534

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jackson RF, Roche GC, Wisler K (2010) Reduction in cholesterol and triglyceride serum levels following low-level laser irradiation: a noncontrolled, nonrandomized pilot study. Am J Cosmet Surg 27(4):174–184

    Google Scholar 

  3. Croghan IT, Hurt RT, Schroeder DR, Fokken SC, Jensen MD, Matthew CMM, Ebbert JO (2020) Low-level laser therapy for weight reduction: a randomized pilot study. Lasers Med Sci 35:663–675. https://doi.org/10.1007/s10103-019-02867-5

    Article  PubMed  Google Scholar 

  4. Simunovic Z, Trobonjaca T (2000) Lasers in medicine and dentistry – basic science and up-to-date clinical application of low energy – level laser therapy. Croatia: Rijeka Vitgraf, Vitagraf/European Medical Laser Association, p 531

  5. Avci P, Nyame TT, Gupta GK, Sadasivam M, Hamblin MR (2013) Low-level laser therapy for fat layer reduction: a comprehensive review. Lasers Surg Med 45(6):349–357. https://doi.org/10.1002/lsm.22153

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cavalcanti TM, Almeida-Barros RQ, Catão MHCV, Feitosa APA, Lins RDAU (2011) Conhecimento das propriedades físicas e da interação do laser com os tecidos biológicos na odontologia [Knowledge of the physical properties and interaction of the laser with biological tissues in dentistry]. An Bras Dermatol 86(5):955–960. https://doi.org/10.1590/S0365-05962011000500014

    Article  PubMed  Google Scholar 

  7. Senhorinho HC (2008) Efeitos do laser de baixa intensidade no tecido adiposo: um estudo experimental em ratos [Effects of low-level laser on adipose tissue: an experimental study in rats]. Dissertation, Pontifícia Universidade Católica do Paraná

  8. Tagliolatto S, Medeiros VB, Leite OG (2012) Laserlipolysis: update and literature review. Surg Cosmet Dermatol 4(2):164–174

    Google Scholar 

  9. Saponaro C, Gaggini M, Carli F, Gastaldelli A (2015) The subtle balance between lipolysis and lipogenesis: a critical point in metabolic homeostasis. Nutrients 7(11):9453–9474. https://doi.org/10.3390/nu7115475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu S, Wu D, Jiang W, Li J, Long J, Jia C, Zhou T (2020) Molecular biomarkers in drug-induced liver injury: challenges and future perspectives. Front Pharmacol 2020 0:1667. https://doi.org/10.3389/fphar.2019.01667

  11. Blaak E (2001) Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4(6):499–502. https://doi.org/10.1097/00075197-200111000-00006

    Article  CAS  PubMed  Google Scholar 

  12. Cognuck SQ, Reis WL, Silva M, Debarba LK, Mecawi AS, de Paula FJA, Franci CR, Elias LLK, Antunes-Rodrigues J (2020) Sex differences in body composition, metabolism-related hormones, and energy homeostasis during aging in Wistar rats. Physiol Rep. https://doi.org/10.14814/phy2.14597

  13. Kuplich MMD (2013) Efeitos do laser de baixa intensidade na proliferação de fibroblastos e genotoxicidade in vitro e proliferação de fibras colágenas e elásticas in vivo [Effects of low-level laser on fibroblast proliferation and genotoxicity in vitro and proliferation of collagen and elastic fibers in vivo]. Dissertation, Universidade Luterana do Brasil.

  14. Galarraga M, Campión J, Muñoz-Barrutia A, Boqué N, Moreno H, Martínez JA, Milagro F, Ortiz-de-Solórzano C (2012) Adiposoft: automated software for the analysis of white adipose tissue cellularity in histological sections. J Lipid Res 53(12):2791–2796. https://doi.org/10.1194/jlr.D023788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  Google Scholar 

  16. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310

    Article  CAS  Google Scholar 

  17. Boveris A, Chance B (1973) The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 134:707–716

    Article  CAS  Google Scholar 

  18. Mavournin KH, Blakey DH, Cimino MC, Salamone MF, Heddle JA (1990) The in vivo micronucleus assay in mammalian bone marrow and peripheral blood. A report of the U.S. Environmental Protection Agency Gene-Tox Program. Mutat Res 239(1):29–80. https://doi.org/10.1016/0165-1110(90)90030-f

    Article  CAS  PubMed  Google Scholar 

  19. Hexsel D, Caspary P, Camozzato FO, Silva AF, Siega S (2016) Reduction of body measures after a nine session protocol with low level laser therapy. Surg Cosmet Dermatol 8(3):210–216

    Google Scholar 

  20. McRae E, Boris J (2013) Independent evaluation of low-level laser therapy at 635 nm for non-invasive body contouring of the waist, hips, and thighs. Lasers Surg Med 45(1):1–7. https://doi.org/10.1002/lsm.22113

    Article  PubMed  Google Scholar 

  21. Mafra F, Macedo MM, Lopes AV, do Nascimento Orphão J, Teixeira CB, Gattai PP, Boim MA, Torres da Silva R, do Nascimento FD, Bjordal JM, Lopes-Martins R (2020) 904 nm low-level laser irradiation decreases expression of catabolism-related genes in white adipose tissue of Wistar rats: possible roles of laser on metabolism. Photobiomodul Photomed Laser Sur 38(1):11–18. https://doi.org/10.1089/photob.2018.4609

  22. Brown SA, Rohrich RJ, Kenkel J, Young VL, Hoopman J, Coimbra M (2004) Effect of low-level laser therapy on abdominal adipocytes before lipoplasty procedures. Plast Reconstr Sur 113(6):1796–1806. https://doi.org/10.1097/01.prs.0000117302.73214.1a

    Article  Google Scholar 

  23. Jankowski M, Gawrych M, Adamska U, Ciescinski J, Serafin Z, Czajkowski R (2017) Low-level laser therapy (LLLT) does not reduce subcutaneous adipose tissue by local adipocyte injury but rather by modulation of systemic lipid metabolism. Lasers Med Sci 32(2):475–479. https://doi.org/10.1007/s10103-016-2021-9

    Article  PubMed  Google Scholar 

  24. Neira R, Arroyave J, Ramirez H, Ortiz CL, Solarte E, Sequeda F, Gutierrez MI (2002) Fat liquefaction: effect of low-level laser energy on adipose tissue. Plast Reconstr Sur 110(3):912–925. https://doi.org/10.1097/00006534-200209010-00030

    Article  Google Scholar 

  25. Goldberg IJ, Ginsberg HN (2006) Ins and outs modulating hepatic triglyceride and development of nonalcoholic fatty liver disease. Gastroenterology 130(4):1343–1346. https://doi.org/10.1053/j.gastro.2006.02.040

    Article  CAS  PubMed  Google Scholar 

  26. Chung S, Parks JS (2016) Dietary cholesterol effects on adipose tissue inflammation. Curr Opin Lipidol 27(1):19–25. https://doi.org/10.1097/MOL.0000000000000260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rydén M, Arner P (2017) Subcutaneous adipocyte lipolysis contributes to circulating lipid levels. Arterioscler Thromb Vasc Biol 37(9):1782–1787. https://doi.org/10.1161/ATVBAHA.117.309759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Verghese PB, Arrese EL, Soulages JL (2007) Stimulation of lipolysis enhances the rate of cholesterol efflux to HDL in adipocytes. Mol Cell Biochem 302(1–2):241–248. https://doi.org/10.1007/s11010-007-9447-0

    Article  CAS  PubMed  Google Scholar 

  29. Jacskon RF, Roche GC, Wisler K (2010) Reduction in cholesterol and triglyceride serum levels following low-level laser irradiation: a noncontrolled, nonrandomized pilot study. Am J Cosmetic Surg 27(4):177–184

  30. Batanouny MH, Yousri RM, Mahfouz S, Salem ES (2018) Int J Radiat Res 17(1):97–110. Available at: http://ijrr.com/article-1-2462-en.pdf. Accessed 5 May 2021

  31. Oliveira FA, Matos AA, Matsuda SS, Buzalaf MA, Bagnato VS, Machado MA, Damante CA, Oliveira RC, Peres-Buzalaf C (2017) Low level laser therapy modulates viability, alkaline phosphatase and matrix metalloproteinase-2 activities of osteoblasts. J Photochem Photobiol B 169:35–40. https://doi.org/10.1016/j.jphotobiol.2017.02.020

    Article  CAS  PubMed  Google Scholar 

  32. Saad A, El Yamany M, Abbas O, Yehia M (2010) Possible role of low level laser therapy on bone turnover in ovariectomized rats. Endocr Regul 44(4):155–163. https://doi.org/10.4149/endo_2010_04_155

    Article  CAS  PubMed  Google Scholar 

  33. Salem ES, Tawfik MS, Youssef SS, Serry ZM, Aboelmagd HF (2013) The photo biological effect of low level laser therapy on serum level of leptin, cholesterol and triglycerides in overweight and obese females. Arab J Nuclear Sci Appl 46(3):307-312

  34. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100(2):197–207. https://doi.org/10.1016/s0092-8674(00)81558-5

    Article  CAS  PubMed  Google Scholar 

  35. Oliveira-Junior MC, Monteiro AS, Leal-Junior EC, Munin E, Osório RA, Ribeiro W, Vieira RP (2013) Low-level laser therapy ameliorates CCl4-induced liver cirrhosis in rats. Photochem Photobiol 89(1):173–178. https://doi.org/10.1111/j.1751-1097.2012.01211.x

    Article  CAS  PubMed  Google Scholar 

  36. Takhtfooladi MA, Takhtfooladi HA, Khansari M (2014) The effects of low-intensity laser therapy on hepatic ischemia-reperfusion injury in a rat model. Lasers Med Sci 29(6):1887–1893. https://doi.org/10.1007/s10103-014-1603-7

    Article  PubMed  Google Scholar 

  37. Oron U, Maltz L, Tuby H, Sorin V, Czerniak A (2010) Enhanced liver regeneration following acute hepatectomy by low-level laser therapy. Photomed Laser Sur 28(5):675–678. https://doi.org/10.1089/pho.2009.2756

    Article  CAS  Google Scholar 

  38. Lim J, Ali ZM, Sanders RA, Snyder AC, Eells JT, Henshel DS, Watkins JB (2009) Effects of low-level light therapy on hepatic antioxidant defense in acute and chronic diabetic rats. J Biochem Mol Toxicol 23(1):1–8. https://doi.org/10.1002/jbt.20257

    Article  CAS  PubMed  Google Scholar 

  39. Halliwell B, Gutteridge JMC (2007) Free radical in biology medicine. University Press, Oxford

    Google Scholar 

  40. Furlanetto MP, Grivicich I, Dihl RR, Lehmann M, de Souza DS, Plentz R (2018) In vivo analysis of photobiomodulation genotoxicity using the somatic mutation and recombination test. Photomed Laser Sur 36(10):536–540. https://doi.org/10.1089/pho.2018.4468

    Article  CAS  Google Scholar 

  41. Carvalho NC, Guedes S, Albuquerque-Júnior R, de Albuquerque DS, de Souza Araújo AA, Paranhos LR, Camargo S, Ribeiro M (2018) Analysis of Aloe vera cytotoxicity and genotoxicity associated with endodontic medication and laser photobiomodulation. Photochem Photobiol B 178:348–354. https://doi.org/10.1016/j.jphotobiol.2017.11.027

    Article  CAS  Google Scholar 

  42. Logan ID, McKenna PG, Barnett YA (1995) An investigation of the cytotoxic and mutagenic potential of low intensity laser irradiation in Friend erythroleukaemia cells. Mut Res 347(2):67–71. https://doi.org/10.1016/0165-7992(95)90072-1

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Marcia Gerhardt Martins, Lucimar Filot da Silva Brum. Data curation and formal analysis: Maria Isabel Morgan Martins, Flavia Tasmin Techera Antunes, Elenir de Fátima Wiilland, Jaqueline Nascimento Picada. Funding acquisition and resources: Alessandra Hubner Souza, Priscilla Batista Pail. Investigation, methodology, and visualization: Marcia Gerhardt Martins, Maria Isabel Morgan Martins, Alessandra Hubner Souza, Elenir de Fátima Wiilland, Jaqueline Nascimento Picada. Project administration: Maria Isabel Morgan Martins, Lucimar Filot da Silva Brum. Supervision: Alessandra Hubner Souza, Maria Isabel Morgan Martins, Priscilla Batista Pail, Lucimar Filot da Silva Brum. Writing — original draft: Marcia Gerhardt Martins, Maria Isabel Morgan Martins, Alessandra Hubner Souza, Lucimar Filot da Silva Brum. Writing — review amd editing: Flavia Tasmin Techera Antunes, Alessandra Hubner Souza, Jaqueline Nascimento Picada, Maria Isabel Morgan Martins.

Corresponding author

Correspondence to Flavia Tasmin Techera Antunes.

Ethics declarations

Ethics approval

The study was approved by the Animal Use Ethics Committee of the Lutheran University of Brazil (protocol 2017/252).

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, M.G., Martins, M.I.M., de Souza, A.H. et al. Evaluation of lipolysis and toxicological parameters of low-level laser therapy at different wavelengths and doses in the abdominal subcutaneous tissue. Lasers Med Sci 37, 1235–1244 (2022). https://doi.org/10.1007/s10103-021-03378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-021-03378-y

Keywords

Navigation