Skip to main content
Log in

Does the application of GaAlAs laser and platelet-rich plasma induce cell proliferation and increase alkaline phosphatase activity in human dental pulp stem cells?

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Blood extracts containing platelet products are gaining popularity in promoting healing and pulp regeneration. This study was designed to evaluate the effect of platelet-rich plasma (PRP) and gallium–aluminum–arsenide (GaAlAs) laser on proliferation and differentiation of human dental pulp stem cells (hDPSCs). In this ex vivo study, hDPSCs isolated from impacted mandibular third molars were cultured in Dulbecco’s Modified Eagle’s medium )DMEM(with 10% fetal bovine serum (FBS). After reaching the desired confluence, the cells were distributed into 4 groups, namely, control, PRP, laser, and PRP+laser for MTT assay and alkaline phosphatase (ALP) test. In the PRP and PRP+laser groups, 10% PRP was added to each well on the plate. In the laser and PRP+laser groups, as for the proliferation test, laser irradiation was carried out for 45 s, while 135 s was designated for ALP test. After 1, 3, and 5 days, cell proliferation and ALP activity were assessed using MTT and ALP colorimetric assay, respectively. Two-way ANOVA was utilized to analyze data. In PRP and PRP+laser groups, cell proliferation and viability increased until day 3 but began to decline afterwards until the 5th day. In the laser group, the increase in proliferation and viability was observed till day 5 which was less than the control group. Laser and control groups exhibited significantly higher cell viability and proliferation than both PRP and PRP+laser groups. ALP activity was more pronounced in PRP+laser, PRP, and laser in descending order; however, all were less than that of the control group. Only in the control group did the ALP activity augment during the 5-day period. Laser irradiation could induce pulp cell proliferation and demonstrated a better performance than PRP in this regard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data are available and ready to release to the editorial board.

References

  1. Steed DL (1997) The role of growth factors in wound healing. Surg Clin N Am 77:575–586

    Article  CAS  Google Scholar 

  2. Sun H-H, Jin T, Yu Q, Chen F-M (2011) Biological approaches toward dental pulp regeneration by tissue engineering. J Tissue Eng Regen Med 5:e1–e16

    Article  CAS  Google Scholar 

  3. ten Dijke P, Iwata KK (1989) Growth factors for wound healing. Bio/Technology 7:793–798

    Google Scholar 

  4. Carlson NE, Roach RB (2002) Platelet-rich plasma: clinical applications in dentistry. J Am Dent Assoc 133:1383–1386

    Article  CAS  Google Scholar 

  5. Albanese A, Licata ME, Polizzi B, Campisi G (2013) Platelet-rich plasma (PRP) in dental and oral surgery: from the wound healing to bone regeneration. Immun Ageing 10(1):23. https://doi.org/10.1186/1742-4933-10-23

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chai J, Jin R, Yuan G, Kanter V, Miron RJ, Zhang Y (2019) Effect of liquid platelet-rich fibrin and platelet-rich plasma on the regenerative potential of dental pulp cells cultured under inflammatory conditions: a comparative analysis. J Endod 45:1000–1008

    Article  Google Scholar 

  7. Murray PE (2018) Platelet-rich plasma and platelet-rich fibrin can induce apical closure more frequently than blood-clot revascularization for the regeneration of immature permanent teeth: a meta-analysis of clinical efficacy. Front Bioeng Biotechnol 6:139

    Article  Google Scholar 

  8. Hargreaves KM, Giesler T, Henry M, Wang Y (2008) Regeneration potential of the young permanent tooth: what does the future hold? J Endod 34:S51–S56

    Article  Google Scholar 

  9. Altaii M, Kaidonis X, Koblar S, Cathro P, Richards L (2017) Platelet rich plasma and dentine effect on sheep dental pulp cells regeneration/revitalization ability (in vitro). Aust Dent J 62:39–46

    Article  CAS  Google Scholar 

  10. Vanka A, Vishwakarma SK, Bhat MK, Vanka S, Wali O, Khan AA (2019) Osteo/odontogenic differentiation of human mesenchymal stem cells with platelet-rich plasma and mineral trioxide aggregate. J Contemp Dent Pract 20:1171–1178

    Article  Google Scholar 

  11. Herrera BS, Coimbra LS, Bastos AS, Teixeira SA, Steffens JP, Muscara MN, Spolidorio LC (2012) Platelet-rich plasma stimulates cytokine expression and alkaline phosphatase activity in osteoblast-derived osteosarcoma cells. Arch Oral Biol 57:1282–1289

    Article  CAS  Google Scholar 

  12. Zhang L, Xie YH, Lin BR (2015) Effects of washed platelets vs platelet-rich plasma on the proliferation and mineralization of rat dental pulp cells. Genet Mol Res 14:9486–9496. https://doi.org/10.4238/2015.August.14.12

    Article  CAS  PubMed  Google Scholar 

  13. Medrado ARAP, Pugliese LS, Reis SRA, Andrade ZA (2003) Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med 32:239–244. https://doi.org/10.1002/lsm.10126

    Article  PubMed  Google Scholar 

  14. Akerzoul N, Chbicheb S (2018) Low laser therapy as an effective treatment of recurrent aphtous ulcers: a clinical case reporting two locations. Pan Afr Med J 30:205. https://doi.org/10.11604/pamj.2018.30.205.15779

    Article  PubMed  PubMed Central  Google Scholar 

  15. Orhan K, Aksoy U, Can-Karabulut DC, Kalender A (2011) Low-level laser therapy of dentin hypersensitivity: a short-term clinical trial. Lasers Med Sci 26:591–598. https://doi.org/10.1007/s10103-010-0794-9

    Article  PubMed  Google Scholar 

  16. Aggarwal H, Singh MP, Nahar P, Mathur H, Gv S (2014) Efficacy of low-level laser therapy in treatment of recurrent aphthous ulcers-a sham controlled, split mouth follow up study. J Clin Diagn Res 8(2):218–221. https://doi.org/10.7860/JCDR/2014/7639.4064

    Article  PubMed  PubMed Central  Google Scholar 

  17. Damante CA, Greghi SLA, Sant'Ana ACP, Passanezi E (2004) Clinical evaluation of the effects of low-intensity laser (GaAlAs) on wound healing after gingivoplasty in humans. J Appl Oral Sc 12:133–136

    Article  Google Scholar 

  18. Khadra M, Lyngstadaas SP, Haanaes HR, Mustafa K (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26(17):3503–3509. https://doi.org/10.1016/j.biomaterials.2004.09.033

    Article  CAS  PubMed  Google Scholar 

  19. El Nawam H, El Backly R, Zaky A, Abdallah A (2019) Low-level laser therapy affects dentinogenesis and angiogenesis of in vitro 3D cultures of dentin-pulp complex. Lasers Med Sci 34(8):1689–1698. https://doi.org/10.1007/s10103-019-02804-6

    Article  PubMed  Google Scholar 

  20. Ohbayashi E, Matsushima K, Hosoya S, Abiko Y, Yamazaki M (1999) Stimulatory effect of laser irradiation on calcified nodule formation in human dental pulp fibroblasts. J Endod 25:30–33. https://doi.org/10.1016/s0099-2399(99)80395-1

    Article  CAS  PubMed  Google Scholar 

  21. Zhao SN, Liu WF, Zhang ZT (2013) Effect of platelet-rich plasma on cell proliferation and osteogenic activity of pulp stem cells. Zhonghua Kou Qiang Yi Xue Za Zhi 48:177–182

    PubMed  Google Scholar 

  22. Han J, Meng HX, Tang JM, Li SL, Tang Y, Chen ZB (2007) The effect of different platelet-rich plasma concentrations on proliferation and differentiation of human periodontal ligament cells in vitro. Cell Prolif 40:241–252. https://doi.org/10.1111/j.1365-2184.2007.00430.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kilian O, Flesch I, Wenisch S, Taborski B, Jork A, Schnettler R, Jonuleit T (2004) Effects of platelet growth factors on human mesenchymal stem cells and human endothelial cells in vitro. Eur J Med Res 9:337–344

    CAS  PubMed  Google Scholar 

  24. Lucarelli E, Beccheroni A, Donati D, Sangiorgi L, Cenacchi A, Del Vento AM, Meotti C, Bertoja AZ, Giardino R, Fornasari PM, Mercuri M, Picci P (2003) Platelet-derived growth factors enhance proliferation of human stromal stem cells. Biomaterials 24:3095–3100. https://doi.org/10.1016/s0142-9612(03)00114-5

    Article  CAS  PubMed  Google Scholar 

  25. Soffer E, Ouhayoun JP, Dosquet C, Meunier A, Anagnostou F (2004) Effects of platelet lysates on select bone cell functions. Clin Oral Implants Res 15:581–588. https://doi.org/10.1111/j.1600-0501.2004.01063.x

    Article  PubMed  Google Scholar 

  26. Lee UL, Jeon SH, Park JY, Choung PH (2011) Effect of platelet-rich plasma on dental stem cells derived from human impacted third molars. Regen Med 6:67–79. https://doi.org/10.2217/rme.10.96

    Article  CAS  PubMed  Google Scholar 

  27. Graziani F, Ivanovski S, Cei S, Ducci F, Tonetti M, Gabriele M (2006) The in vitro effect of different PRP concentrations on osteoblasts and fibroblasts. Clin Oral Implants Res 17:212–219. https://doi.org/10.1111/j.1600-0501.2005.01203.x

    Article  PubMed  Google Scholar 

  28. Liu Y, Kalen A, Risto O, Wahlstrom O (2002) Fibroblast proliferation due to exposure to a platelet concentrate in vitro is pH dependent. Wound Repair Regen 10:336–340. https://doi.org/10.1046/j.1524-475x.2002.10510.x

    Article  PubMed  Google Scholar 

  29. Kulkarni S, Meer M, George R (2020) The effect of photobiomodulation on human dental pulp-derived stem cells: systematic review. Lasers Med Sci. https://doi.org/10.1007/s10103-020-03071-6

  30. Theocharidou A, Bakopoulou A, Kontonasaki E, Papachristou E, Hadjichristou C, Bousnaki M, Theodorou G, Papadopoulou L, Kantiranis N, Paraskevopoulos K, Koidis P (2017) Odontogenic differentiation and biomineralization potential of dental pulp stem cells inside Mg-based bioceramic scaffolds under low-level laser treatment. Lasers Med Sci 32:201–210. https://doi.org/10.1007/s10103-016-2102-9

    Article  PubMed  Google Scholar 

  31. Hirata S, Kitamura C, Fukushima H, Nakamichi I, Abiko Y, Terashita M, Jimi E (2010) Low-level laser irradiation enhances BMP-induced osteoblast differentiation by stimulating the BMP/Smad signaling pathway. J Cell Biochem 111(6):1445–1452. https://doi.org/10.1002/jcb.22872

    Article  CAS  PubMed  Google Scholar 

  32. Manzano-Moreno FJ, Medina-Huertas R, Ramos-Torrecillas J, García-Martínez O, Ruiz C (2015) The effect of low-level diode laser therapy on early differentiation of osteoblast via BMP-2/TGF-β1 and its receptors. J Craniomaxillofac Surg 43(9):1926–1932. https://doi.org/10.1016/j.jcms.2015.08.026

    Article  PubMed  Google Scholar 

  33. Matsui S, Takeuchi H, Tsujimoto Y, Matsushima K (2008) Effects of Smads and BMPs induced by Ga-Al-As laser irradiation on calcification ability of human dental pulp cells. J Oral Sci 50:75–81. https://doi.org/10.2334/josnusd.50.75

    Article  CAS  PubMed  Google Scholar 

  34. Marques NCT, Neto NL, Prado MTO, Vitor LLR, Oliveira RC, Sakai VT, Santos CF, Machado MAAM, Oliveira TM (2017) Effects of PBM in different energy densities and irradiance on maintaining cell viability and proliferation of pulp fibroblasts from human primary teeth. Lasers Med Sci 32(7):1621–1628. https://doi.org/10.1007/s10103-017-2301-z

    Article  PubMed  Google Scholar 

  35. Bezgin T, Yilmaz AD, Celik BN, Kolsuz ME, Sonmez H (2015) Efficacy of platelet-rich plasma as a scaffold in regenerative endodontic treatment. J Endod 41:36–44. https://doi.org/10.1016/j.joen.2014.10.004

    Article  PubMed  Google Scholar 

  36. Alagl A, Bedi S, Hassan K, AlHumaid J (2017) Use of platelet-rich plasma for regeneration in non-vital immature permanent teeth: clinical and cone-beam computed tomography evaluation. J Int Med Res 45:583–593. https://doi.org/10.1177/0300060517692935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhu X, Zhang C, Huang GT, Cheung GS, Dissanayaka WL, Zhu W (2012) Transplantation of dental pulp stem cells and platelet-rich plasma for pulp regeneration. J Endod 38(12):1604–1609. https://doi.org/10.1016/j.joen.2012.09.001

    Article  PubMed  Google Scholar 

  38. Tselnik M, Baumgartner JC, Marshall JG (2004) Bacterial leakage with mineral trioxide aggregate or a resin-modified glass ionomer used as a coronal barrier. J Endod 30(11):782–784

    Article  Google Scholar 

  39. Bindal P, Gnanasegaran N, Bindal U, Haque N, Ramasamy TS, Chai WL, Kasim NHA (2019) Angiogenic effect of platelet-rich concentrates on dental pulp stem cells in inflamed microenvironment. Clin Oral Investig 23:3821–3831. https://doi.org/10.1007/s00784-019-02811-5

    Article  PubMed  Google Scholar 

  40. He L, Lin Y, Hu X, Zhang Y, Wu H (2009) A comparative study of platelet-rich fibrin (PRF) and platelet-rich plasma (PRP) on the effect of proliferation and differentiation of rat osteoblasts in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:707–713. https://doi.org/10.1016/j.tripleo.2009.06.044

    Article  PubMed  Google Scholar 

  41. Dominguez A, Lopez C, Rodrigo (2008) An in vitro study of the reaction of periodontal and gingival fibroblasts to low-level laser irradiation. J Oral Laser Appl 8:235–244

    Google Scholar 

  42. Josephson CD, Castillejo MI, Grima K, Hillyer CD (2010) ABO-mismatched platelet transfusions: strategies to mitigate patient exposure to naturally occurring hemolytic antibodies. Transfus Apher Sci 42:83–88. https://doi.org/10.1016/j.transci.2009.10.013

    Article  PubMed  Google Scholar 

  43. Liumbruno GM, Bennardello F, Lattanzio A, Piccoli P, Rossetti G, Italian Society of Transfusion M, Immunohaematology Working P (2011) Recommendations for the transfusion management of patients in the peri-operative period. II. The intra-operative period. Blood Transfus 9:189–217. https://doi.org/10.2450/2011.0075-10

    Article  PubMed  PubMed Central  Google Scholar 

  44. Cenni E, Perut F, Ciapetti G, Savarino L, Dallari D, Cenacchi A, Stagni C, Giunti A, Fornasari PM, Baldini N (2008) In vitro evaluation of freeze-dried bone allografts combined with platelet rich plasma and human bone marrow stromal cells for tissue engineering. J Mater Sci-Mater M 20:45–50. https://doi.org/10.1007/s10856-008-3544-9

    Article  CAS  Google Scholar 

  45. Mazzucco L, Balbo V, Cattana E, Borzini P (2008) Platelet-rich plasma and platelet gel preparation using Plateltex (R). Vox Sang 94:202–208. https://doi.org/10.1111/j.1423-0410.2007.01027.x

    Article  CAS  PubMed  Google Scholar 

  46. Silva RF, Carmona JU, Rezende CMF (2012) Comparison of the effect of calcium gluconate and batroxobin on the release of transforming growth factor beta 1 in canine platelet concentrates. BMC Vet Res 8:121. https://doi.org/10.1186/1746-6148-8-121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fernandes G, Yang S (2016) Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering. Bone Res 4:16036–16036. https://doi.org/10.1038/boneres.2016.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This article is based on Aminmohammad Bahlakeh’s postgraduate thesis (No. 503). It has been supported by the Vice Chancellor for Research of Mashhad University of Medical Sciences, Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farzaneh Ahrari or Hamid Jafarzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval (include appropriate approvals or waivers)

The ethical approval number in Ethics Committee of Mashhad University of Medical Sciences is 910176.

Consent to participate

Not applicable.

Consent for publication

The publisher has our consent to publish this article.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bidar, M., Bahlakeh, A., Mahmoudi, M. et al. Does the application of GaAlAs laser and platelet-rich plasma induce cell proliferation and increase alkaline phosphatase activity in human dental pulp stem cells?. Lasers Med Sci 36, 1289–1295 (2021). https://doi.org/10.1007/s10103-020-03239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03239-0

Keywords

Navigation