Skip to main content

Advertisement

Log in

Effect of photobiomodulation on CCC-ESF reactive oxygen species steady-state in high glucose mediums

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Delayed wound healing is one of the most challenging complications of diabetes mellitus (DM) in clinical medicine, and it is related to the excessive generation of reactive oxygen species (ROS). Photobiomodulation (PBM) can promote wound healing in many ways, so it can be used as a method for the treatment of delayed healing of DM wounds. In this study, we investigated the effect of PBM on ROS homeostasis in human embryonic skin fibroblast cells (CCC-ESFs) cultured in high glucose concentrations. The CCC-ESFs were cultured in vitro and divided into two groups, including the control group and the 635 nm laser irradiation group. After 2 days of high glucose treatment, the experimental group was irradiated with different doses of laser for 3 days. First, we measured the cellular proliferation, and the results showed that laser irradiation could promote cellular proliferation. Then, we measured the generation of ROS, the activities of total superoxide dismutase (SOD), and total antioxidant capacity (TAC) of the cells; the results showed that high glucose destroyed cells by inducing high concentration of ROS, the balance of oxidation, and antioxidation cause oxidative stress damage to cells. PBM can increase the antioxidant capacity of cells, reducing the high concentration of ROS induced by high glucose. Finally, we measured the levels of mitochondrial membrane potential (∆ψm) and the secretion of nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β); the results showed that PBM can reduce apoptosis and regulate the inflammatory state. We conclude that PBM can maintain the ROS homeostasis, increase the TAC of cells, and trigger the cellular proliferation, and the response of CCC-ESFs to PBM was dose-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zaccardi O, Webb DR, Yates T et al (2016) Pathophysiology of type 1 and type 2 diabetes mellitus: a 90-year perspective. Post Grad Med J 92(1084):63–69. https://doi.org/10.1136/postgradmedj-2015-133281

    Article  CAS  Google Scholar 

  2. Suhariningsih, Winarni D, Husen SA et al (2019) The effect of electric field, magnetic field, and infrared ray combination to reduce HOMA-IR index and GLUT 4 in diabetic model of Mus musculus. Lasers Med Sci:1–7. https://doi.org/10.1007/s10103-019-02916-z

  3. Arya AK, Tripathi K, Das P et al (2014) Promising role of ANGPTL4 gene in diabetic wound healing. Int J Low Extrem Wounds 13(1):58–63. https://doi.org/10.1177/1534734614520704

    Article  CAS  PubMed  Google Scholar 

  4. Moura LI, Dias AM, Carvalho E et al (2013) Recent advances on the development of wound dressings for diabetic foot ulcer treatment-a review. Acta Biomater 9(7):7093–7114. https://doi.org/10.1016/j.actbio.2013.03.033

    Article  CAS  PubMed  Google Scholar 

  5. Jazwa A, Kucharzewska P, Leja J et al (2010) Combined vascular endothelial growth factor-A and fibroblast growth factor 4 gene transfer improves wound healing in diabetic mice. Genet Vaccines Ther 8(1):6. https://doi.org/10.1186/1479-0556-8-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zecha JA, Raber-Durlacher JE, Nair RG et al (2016) Low level laser therapy/photobiomodulation in the management of side effects of chemoradiation therapy in head and neck cancer: part 1: mechanisms of action, dosimetric, and safety considerations. Support Care Cancer 24(6):2781–2792. https://doi.org/10.1007/s00520-016-3152-z

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chung H, Dai T, Sharma SK et al (2012) The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng 40(2):516–533. https://doi.org/10.1007/s10439-011-0454-7

    Article  PubMed  Google Scholar 

  8. Houreld NN, Sekhejane PR, Abrahamse H (2010) Irradiation at 830 nm stimulates nitric oxide production and inhibits pro-inflammatory cytokines in diabetic wounded fibroblast cells. Lasers Surg Med 42(6):494–502. https://doi.org/10.1002/lsm.20812

    Article  PubMed  Google Scholar 

  9. Peng F, Zheng YD, Xu XQ et al (2011) 620 nm red light enhances osteogenic differentiation in mesenchymal stem cells. Acta Laser Biology Sinica 20(3):285–288. https://doi.org/10.1007/s10570-010-9464-0

    Article  CAS  Google Scholar 

  10. Santos NR, dos Santos JN, dos Reis JA et al (2010) Influence of the use of laser phototherapy (lambda660 or 790 nm) on the survival of cutaneous flaps on diabetic rats. Photomed Laser Surg 28(4):483–488. https://doi.org/10.1089/pho.2009.2500

    Article  PubMed  Google Scholar 

  11. Martins DF, Turnes BL, Cidral-Filho FJ et al (2016) Light-emitting diode therapy reduces persistent inflammatory pain: role of interleukin 10 and antioxidant enzymes. Neuroscience 324:485–495. https://doi.org/10.1016/j.neuroscience.2016.03.035

    Article  CAS  PubMed  Google Scholar 

  12. Ye J, Wang S, Leonard SS et al (1999) Role of reactive oxygen species and p53 in chromium(VI)-induced apoptosis. J Biol Chem 274(49):34974–34980. https://doi.org/10.1074/jbc.274.49.34974

    Article  CAS  PubMed  Google Scholar 

  13. Cossarizza A (1993) A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-1,1′3,3′-tetraethylbenzimidazolcar-bocyanin iodide (JC-1). Biochem Biophys Res Commun 30(1):40–45. https://doi.org/10.1006/bbrc.1993.2438

    Article  Google Scholar 

  14. Houreld NN, Abrahamse H (2008) Laser light influences cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose- and wavelength-dependent manner. Lasers Med Sci 23(1):11–18. https://doi.org/10.1007/s10103-007-0445-y

    Article  CAS  PubMed  Google Scholar 

  15. Houreld N, Abrahamse H (2010) Low-intensity laser irradiation stimulates wound healing in diabetic wounded fibroblast cells (WS1). Diabetes Technol Ther 12(12):971–978. https://doi.org/10.1089/dia.2010.0039

    Article  PubMed  Google Scholar 

  16. Mirzaei M, Bayat M, Mosafa N et al (2007) Effect of low-level laser therapy on skin fibroblasts of streptozotocin-diabetic rats. Photomed Laser Surg 25(6):519–525. https://doi.org/10.1089/pho.2007.2098

    Article  PubMed  Google Scholar 

  17. Spitler R, Berns MW (2014) Comparison of laser and diode sources for acceleration of in vitro wound healing by low-level light therapy. J Biomed Opt 19(3):38001. https://doi.org/10.1117/1.JBO.19.3.038001

    Article  PubMed  Google Scholar 

  18. Chen HL, Wu HJ, Yin HJ et al (2019) Effect of photobiomodulation on neural differentiation of human umbilical cord mesenchymal stem cells. Lasers Med Sci 34(4):667–675. https://doi.org/10.1007/s10103-018-2638-y

    Article  PubMed  Google Scholar 

  19. Daíse RM, Verônica FA, Barbisan F et al (2019) In vitro effect of low-level laser therapy on the proliferative, apoptosis modulation, and oxi-inflammatory markers of premature-senescent hydrogen peroxide-induced dermal fibroblasts. Lasers Med Sci 34(11):1333–1343. https://doi.org/10.1007/s10103-019-02728-1

    Article  Google Scholar 

  20. Panahi G, Pasalar P, Zare M et al (2018) MCU-knockdown attenuates high glucose-induced inflammation through regulating MAPKs/NF-kappaB pathways and ROS production in HepG2 cells. PLoS One 13(4):e0196580. https://doi.org/10.1371/journal.pone.0196580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bajaj S, Khan A (2012) Antioxidants and diabetes. Indian J Endocrinol Metab 16(Suppl 2):267–271. https://doi.org/10.4103/2230-8210.104057

    Article  CAS  Google Scholar 

  22. Rahimi-Madiseh M, Malekpour-Tehrani A, Bahmani M et al (2016) The research and development on the antioxidants in prevention of diabetic complications. Asian Pac J TropMed 9(9):825–831. https://doi.org/10.1016/j.apjtm.2016.07.001

    Article  CAS  Google Scholar 

  23. Dillenburg CS, Almeida LO, Martins MD et al (2014) Laser phototherapy triggers the production of reactive oxygen species in oral epithelial cells without inducing DNA damage. J Biomed Opt 19(4):048002. https://doi.org/10.1117/1.jbo.19.4.048002

    Article  PubMed  Google Scholar 

  24. Koracevic D, Koracevic G, Djordjevic V et al (2001) Method for the measurement of antioxidant activity in human. J Clin Pathol 54(5):356–361. https://doi.org/10.1136/jcp.54.5.356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen HL, Wang H, Li Y et al (2016) Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells. AIP Adv 6(4):045018. https://doi.org/10.1063/1.4948442

    Article  CAS  Google Scholar 

  26. Dolgova D, Abakumova T, Gening T et al (2019) Anti-inflammatory and cell proliferative effect of the 1270 nm laser irradiation on the BALB/c nude mouse model involves activation of the cell antioxidant system. Biomed Opt Express 10(8):4261–4275. https://doi.org/10.1364/BOE.10.004261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen W, Yang J, Chen SH et al (2017) Importance of mitochondrial calcium uniporter in high glucose-induced endothelial cell dysfunction. Diab Vasc Dis Res 14(6):494–501. https://doi.org/10.1177/1479164117723270

    Article  CAS  PubMed  Google Scholar 

  28. Cho M, Hunt TK, Hussain MZ (2001) Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release. Am J Physiol Heart Circ Physiol 280(5):H2357–H2363. https://doi.org/10.1152/ajpheart.2001.280.5.H2357

    Article  CAS  PubMed  Google Scholar 

  29. De Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22(3):1–17. https://doi.org/10.1109/JSTQE.2016.2561201

    Article  CAS  Google Scholar 

  30. Carroll JD, Milward MR, Cooper PR et al (2014) Developments in low level light therapy (LLLT) for dentistry. Dent Mater 30(5):465–475. https://doi.org/10.1016/j.dental.2014.02.006

    Article  PubMed  Google Scholar 

  31. Brandner JM, Zacheja S, Houdek P et al (2008) Expression of matrix metalloproteinases, cytokines, and onnexins in diabetic and nondiabetic human keratinocytes before and after transplantation into an ex vivo wound-healing model. Diabetes Care 31(1):114–120. https://doi.org/10.2337/dc07-1304

    Article  CAS  PubMed  Google Scholar 

  32. Sekhejane PR, Houreld NN, Abrahamse H (2011) Irradiation at 636 nm positively affects diabetic wounded and hypoxic cells in vitro. Photomed Laser Surg 29(8):521–530. https://doi.org/10.1089/pho.2010.2877

    Article  PubMed  Google Scholar 

  33. Lee KD, Chiang MH, Chen PH et al (2018) The effect of low-level laser irradiation on hyperglycemia-induced inflammation in human gingival fibroblasts. Lasers Med Sci 34(5):913–920. https://doi.org/10.1007/s10103-018-2675-6

    Article  PubMed  Google Scholar 

  34. Svobodova B, Kloudova A, Ruzicka J et al (2019) The effect of 808 nm and 905 nm wavelength light on recovery after spinal cord injury. Sci Rep 9(1):7660–7674. https://doi.org/10.1038/s41598-019-44141-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (Grant Nos. 61705164, 61905177) and the Tianjin Natural Science Foundation of China (Grant Nos. 19JCQNJC01600, 19JCQNJC01400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhai Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclaimer

The authors are solely responsible for the content and writing of this paper.

Ethics approval

Since the study used commercial cell lines, it is not necessary to submit to an ethics committee.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Tu, M., Shi, J. et al. Effect of photobiomodulation on CCC-ESF reactive oxygen species steady-state in high glucose mediums. Lasers Med Sci 36, 555–562 (2021). https://doi.org/10.1007/s10103-020-03057-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-020-03057-4

Keywords

Navigation