Skip to main content

Advertisement

Log in

Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This in vitro study evaluated the role of photobiomodulation therapy (PBMT) on viability and migration of human dental pulp stem cells (hDPSCs) and its association to epigenetic mechanisms such as histone acetylation. The hDPSCs were characterized and assigned into control and PBMT groups. For the PBMT, five laser irradiations at 6-h intervals were performed using a continuous-wave InGaAlP diode laser. Viability (MTT), migration (scratch), and histone acetylation H3 (H3K9ac immunofluorescence) were evaluated immediately after the last irradiation. PBMT significantly increased the viability (P = 0.004). Also, PBMT group showed significantly increased migration of cells in the wound compared to the control in 6 h (P = 0.002), 12 h (P = 0.014) and 18 h (P = 0.083) being faster than the control, which only finished the process at 24 h. PBMT induced epigenetic modifications in hDPSC due to increased histone acetylation (P = 0.001). PBMT increased viability and migration of hDPSCs, which are related with the upregulation of histone acetylation and could be considered a promising adjuvant therapy for regenerative endodontic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hargreaves KM, Diogenes A, Teixeira FB (2013) Treatment options: biological basis of regenerative endodontic procedures. J Endod 39:S30–S43. https://doi.org/10.1016/j.joen.2012.11.025

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ginani F, Soares DM, Barreto MPV, Barboza CAG (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30:2189–2219. https://doi.org/10.1007/s10103-015-1730-9

    Article  PubMed  Google Scholar 

  3. Marques MM, Diniz IM, de Cara SP, Pedroni AC, Abe GL, D'Almeida-Couto RS, Lima PL, Tedesco TK, Moreira MS (2016) Photobiomodulation of dental derived mesenchymal stem cells: a systematic review. Photomed Laser Surg 34:500–508. https://doi.org/10.1089/pho.2015.4038

    Article  PubMed  Google Scholar 

  4. Diniz IMA, Carreira ACO, Sipert CR, Uehara CM, Moreira MSN, Freire L, Pelissari C, Kossugue PM, de Araújo DR, Sogayar MC, Marques MM (2018) Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering. J Cell Physiol 233:4907–4918. https://doi.org/10.1002/jcp.26309

    Article  CAS  PubMed  Google Scholar 

  5. Pedroni AC, Diniz IM, Abe GL, Moreira MS, Sipert CR, Marques MM (2018) Photobiomodulation therapy and vitamin C on longevity of cell sheets of human dental pulp stem cells. J Cell Physiol 233:7026–7035. https://doi.org/10.1002/jcp.26626

    Article  CAS  PubMed  Google Scholar 

  6. Anders JJ, Lanzafame RJ, Arany PR (2015) Low-level light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg 33:183–184. https://doi.org/10.1089/pho.2015.9848

    Article  PubMed  PubMed Central  Google Scholar 

  7. Salate AC, Barbosa G, Gaspar P, Koeke PU, Parizotto NA, Benze BG, Foschiani D (2005) Effect of in-Ga-Al-P diode laser irradiation on angiogenesis in partial ruptures of Achilles tendon in rats. Photomed Laser Surg 23:470–475. https://doi.org/10.1089/pho.2005.23.470

    Article  PubMed  Google Scholar 

  8. De Souza TO, Mesquita DA, Ferrari RA, Dos Santos Pinto D Jr, Correa L, Bussadori SK, Fernandes KP, Martins MD (2011) Phototherapy with low-level laser affects the remodeling of types I and III collagen in skeletal muscle repair. Lasers Med Sci 26:803–814. https://doi.org/10.1007/s10103-011-0951-9

    Article  PubMed  Google Scholar 

  9. Karu T (1989) Laser biostimulation: a photobiological phenomenon. J Photochem Photobiol B 3:638–640. https://doi.org/10.1016/1011-1344(89)80088-0

    Article  CAS  PubMed  Google Scholar 

  10. Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci 12:16–14. https://doi.org/10.1186/1423-0127-16-4

    Article  CAS  Google Scholar 

  11. Passarella S, Karu T (2014) Absorption of monochromatic and narrow band radiation in the visible and near IR by both mitochondrial and non-mitochondrial photoacceptors results in photobiomodulation. J Photochem Photobiol B 140:344–358. https://doi.org/10.1016/j.jphotobiol.2014.07.021

    Article  CAS  PubMed  Google Scholar 

  12. Wu H, Sun YE (2006) Epigenetic regulation of stem cell differentiation. Pediatr Res 59:21R–25R. https://doi.org/10.1203/01.pdr.0000203565.76028.2a

    Article  PubMed  Google Scholar 

  13. Javaid N, Choi S (2017) Acetylation- and methylation-related epigenetic proteins in the context of their targets. Genes (Basel) 8:E196. https://doi.org/10.3390/genes8080196

    Article  CAS  Google Scholar 

  14. Arnsdorf EJ, Tummala P, Castillo AB, Zhang F, Jacobs CR (2010) The epigenetic mechanism of mechanically induced osteogenic differentiation. J Biomech 43:2881–2886. https://doi.org/10.1016/j.jbiomech.2010.07.033

    Article  PubMed  PubMed Central  Google Scholar 

  15. Boland MJ, Nazor KL, Loring JF (2014) Epigenetic regulation of pluripotency and differentiation. Circ Res 115:311–324. https://doi.org/10.1161/CIRCRESAHA.115.301517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martins MD, Castilho RM (2013) Histones: controlling tumor signaling circuitry. J Carcinogr Mutagen 29:1–12. https://doi.org/10.4172/2157-2518.S5-001

    Article  Google Scholar 

  17. Thiagalingam S, Cheng KH, Lee HJ, Mineva N, Thiagalingam A, Ponte JF (2003) Histone deacetylases: unique players in shaping the epigenetic histone code. Ann N Y Acad Sci 983:84–100. https://doi.org/10.1111/j.1749-6632.2003.tb05964.x

    Article  CAS  PubMed  Google Scholar 

  18. Jayani RS, Ramanujam PL, Galande S (2010) Studying histone modifications and their genomic functions by employing chromatin immunoprecipitation and immunoblotting. Methods Cell Biol 98:35–56. https://doi.org/10.1016/S0091-679X(10)98002-3

    Article  CAS  PubMed  Google Scholar 

  19. Ferrari P, Strubin M (2015) Uncoupling histone turnover from transcription-associated histone H3 modifications. Nucleic Acids Res 43:3972–3985. https://doi.org/10.1093/nar/gkv282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duncan HF, Smith AJ, Fleming GJ, Cooper PR (2012) Histone deacetylase inhibitors induced differentiation and accelerated mineralization of pulp-derived cells. J Endod 38:339–345. https://doi.org/10.1016/j.joen.2011.12.014

    Article  PubMed  Google Scholar 

  21. Duncan HF, Smith AJ, Fleming GJ, Cooper PR (2013) Histone deacetylase inhibitors epigenetically promote reparative events in primary dental pulp cells. Exp Cell Res 319:1534–1543. https://doi.org/10.1016/j.yexcr.2013.02.022

    Article  CAS  PubMed  Google Scholar 

  22. Duncan HF, Smith AJ, Fleming GJ, Cooper PR (2016) Epigenetic modulation of dental pulp stem cells: implications for regenerative endodontics. Int Endod J 49:431–446. https://doi.org/10.1111/iej.12475

    Article  CAS  PubMed  Google Scholar 

  23. Hui T, Wang C, Chen D, Zheng L, Huang D, Ye L (2017) Epigenetic regulation in dental pulp inflammation. Oral Dis 23:22–28. https://doi.org/10.1111/odi.12464

    Article  CAS  PubMed  Google Scholar 

  24. Eduardo FP, Bueno DF, de Freitas PM, Marques MM, Passos-Bueno MR, Eduardo CP, Zatz M (2008) Stem cell proliferation under low-intensity laser irradiation: a preliminary study. Lasers Surg Med 40:433–438. https://doi.org/10.1002/lsm.20646

    Article  Google Scholar 

  25. Arany PR, Huang GX, Gadish O, Feliz J, Weaver JC, Kim J, Yuen WW, Mooney DJ (2014) Multilineage MSC differentiation via engineered morphogen fields. J Dent Res 93:1250–1257. https://doi.org/10.1177/0022034514542272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zaccara IM, Ginani F, Mota-Filho HG, Henriques ÁC, Barboza CA (2015) Effect of low-level laser irradiation on proliferation and viability of human dental pulp stem cells. Lasers Med Sci 30:2259–2264. https://doi.org/10.1007/s10103-015-1803-9

    Article  PubMed  Google Scholar 

  27. Zaccara IM, Mestieri LB, Moreira MS, Grecca FS, Martins MD, Kopper PMP (2018) Photobiomodulation therapy improves multilineage differentiation of dental pulp stem cells in three-dimensional culture model. J Biomed Opt 23:1–9. https://doi.org/10.1117/1.JBO.23.9.095001

    Article  PubMed  Google Scholar 

  28. Meneguzzo DT, Eduardo CP, Ribeiro MS, Marques MM (2008) Influence of the fractioned irradiation energy in the phototherapy with low intensity laser on the growth of human dental pulp fibroblasts. Proc SPIE 6846:68460A-1. https://doi.org/10.1117/12.761220

    Article  CAS  Google Scholar 

  29. Pellicioli AC, Martins MD, Dillenburg CS, Marques MM, Squarize CH, Castilho RM (2014) Laser phototherapy accelerates oral keratinocyte migration through the modulation of the mammalian target of rapamycin signaling pathway. J Biomed Opt 19:028002. https://doi.org/10.1117/1.JBO.19.2.028002

    Article  CAS  PubMed  Google Scholar 

  30. Martins MD, Jiao Y, Larsson L, Almeida LO, Garaicoa-Pazmino C, Le JM, Squarize CH, Inohara N, Giannobile WV, Castilho RM (2016) Epigenetic modifications of histones in periodontal disease. J Dent Res 95:215–222. https://doi.org/10.1177/0022034515611876

    Article  CAS  PubMed  Google Scholar 

  31. Piva E, Silva AF, Nör JE (2014) Functionalized scaffolds to controldental pulp stem cell fate. J Endod 40:S33–S40. https://doi.org/10.1016/j.joen.2014.01.013

    Article  PubMed  PubMed Central  Google Scholar 

  32. De Villiers JA, Houreld NN, Abrahamse H (2011) Influence of low intensity laser irradiation on isolated human adipose derived stem cells over 72 hours and their differentiation potential into smooth muscle cells using retinoic acid. Stem Cell Rev 7:869–882. https://doi.org/10.1007/s12015-011-9244-8

    Article  CAS  Google Scholar 

  33. Borzabadi-Farahani A (2016) Effect of low-level laser irradiation on proliferation of human dental mesenchymal stem cells; a systemic review. J Photochem Photobiol B 162:577–582. https://doi.org/10.1016/j.jphotobiol.2016.07.022

    Article  CAS  PubMed  Google Scholar 

  34. Emelyanov AN, Kiryanova VV (2015) Photomodulation of proliferation and differentiation of stem cells by the visible and infrared light. Photomed Laser Surg 33:164–174. https://doi.org/10.1089/pho.2014.3830

    Article  PubMed  Google Scholar 

  35. Horvát-Karajz K, Balogh Z, Kovács V, Hámori Drrernat A, Sréter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41:463–469. https://doi.org/10.1002/lsm.20791

    Article  PubMed  Google Scholar 

  36. Soares DM, Ginani F, Henriques AG, Barboza CA (2013) Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med Sci 30:1171–1174. https://doi.org/10.1007/s10103-013-1436-9

    Article  PubMed  Google Scholar 

  37. Friedmann H, Lubart R, Laulicht I, Rochkind S (1991) A possible explanation of laser-induced stimulation and damage of cell cultures. J Photochem Photobiol B 11:87–91. https://doi.org/10.1016/1011-1344(91)80271-I

    Article  CAS  PubMed  Google Scholar 

  38. Moura-Netto C, Ferreira LS, Maranduba CM, Mello-Moura ACV, Marques MM (2016) Low-intensity laser phototherapy enhances the proliferation of dental pulp stem cells under nutritional deficiency. Braz Oral Res 31:e80. https://doi.org/10.1590/1807-3107BOR-2016.vol30.0080

    Article  Google Scholar 

  39. Huang YY, Chen ACH, Carroll JD, Hamblin MR (2009) Biphasic dose response in low-level light therapy. Dose Response 7:358–383. https://doi.org/10.2203/dose-response.09-027.Hamblin

    Article  PubMed  PubMed Central  Google Scholar 

  40. Pereira LO, Longo JP, Azevedo RB (2012) Laser irradiation did not increase the proliferation or the differentiation of stem cells from normal and inflamed dental pulp. Arch Oral Biol 57:1079–1085. https://doi.org/10.1016/j.archoralbio.2012.02.012

    Article  PubMed  Google Scholar 

  41. Tabatabaei FS, Torshabi M, Nasab MM, Khosraviani K, Khojasteh A (2015) Effect of low-level diode laser on proliferation and osteogenic differentiation of dental pulp stem cells. Laser Phys 25:095602. https://doi.org/10.1007/s10103-013-1436-9

    Article  Google Scholar 

  42. Liang CC, Park AY, Guan JL (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333. https://doi.org/10.1038/nprot.2007.30

    Article  CAS  PubMed  Google Scholar 

  43. Tschon M, Incerti-Parenti S, Cepollaro S (2015) Photobiomodulation with low-level diode laser promotes osteoblast migration in an in vitro micro wound model. J Biomed Opt 20:78002. https://doi.org/10.1117/1.JBO.20.7.078002

    Article  PubMed  Google Scholar 

  44. Gagnon D, Gibson TW, Singh A (2016) An in vitro method to test the safety and efficacy of low-level laser therapy (LLLT) in the healing of a canine skin model. BMC Vet Res 12:73. https://doi.org/10.1186/s12917-016-0689-5

    Article  PubMed  PubMed Central  Google Scholar 

  45. De Freitas LF, Hamblim MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron 22:7000417. https://doi.org/10.1109/JSTQE.2016.2561201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Seo JY, Park YJ, Yi YA, Hwang JY, Lee IB, Cho BH, Son HH, Seo DG (2015) Epigenetics: general characteristics and implications for oral health. Restor Dent Endod 40:14–22. https://doi.org/10.5395/rde.2015.40.1.14

    Article  PubMed  Google Scholar 

  47. Zupkovitz G, Tischler J, Posch M, Sadzak I, Ramsauer K, Egger G, Grausenburger R, Schweifer N, Chiocca S, Decker T, Seiser C (2006) Negative and positive regulation of gene expression by mouse histone deacetylase 1. Mol Cell Biol 26:7913–7928. https://doi.org/10.1128/MCB.01220-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Paino F, La Noce M, Tirino V, Naddeo P, Desiderio V, Pirozzi G, De Rosa A, Laino L, Altucci L, Papaccio G (2014) Histone deacetylase inhibition with valproic acid downregulates osteocalcin gene expression in human dental pulp stem cells and osteoblasts: evidence for HDAC2 involvement. Stem Cells 32:279–289. https://doi.org/10.1002/stem.1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jin H, Park JY, Choi H, Choung PH (2013) HDAC inhibitortrichostatin a promotes proliferation and odontoblast differentiation of human dental pulp stem cells. Tissue Eng Part A 19:613–624. https://doi.org/10.1089/ten.TEA.2012.0163

    Article  CAS  PubMed  Google Scholar 

  50. Mahmud N, Petro B, Baluchamy S, Li X, Taioli S, Lavelle D, Quigley JG, Suphangul M, Araki H (2014) Differential effects of epigenetic modifiers on the expansion and maintenance of human cord blood stem/progenitor cells. Biol Blood Marrow Transplant 20:480–489. https://doi.org/10.1016/j.bbmt.2013.12.562

    Article  CAS  PubMed  Google Scholar 

  51. Luo Z, Wang Z, He X, Liu N, Liu B, Sun L, Wang J, Ma F, Duncan H, He W, Cooper P (2017) Effects of histone deacetylase inhibitors on regenerative cell responses in human dental pulp cells. Int Endod J 51:767–778. https://doi.org/10.1111/iej.12779

    Article  PubMed  Google Scholar 

  52. Saraiva NZ, Oliveira CS, Garcia JM (2010) Histone acetylation and its role in embryonic stem cell differentiation. World J Stem Cells 2:121–126. https://doi.org/10.4252/wjsc.v2.i6.121

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors Ivana Maria Zaccara and Letícia Boldrin Mestieri received funding from Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) agency, Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia Maria Poli Kopper.

Ethics declarations

The study was approved by the Institutional Review Board of the Federal University of Rio Grande do Sul, Brazil (CAAE: 45459615.8.0000.5347).

Conflict of interest

The authors declare that they have no competing interests. The authors (Ivana Maria Zaccara and Letícia Boldrin Mestieri) received funding from Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) agency, Brazil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaccara, I.M., Mestieri, L.B., Pilar, E.F.S. et al. Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation. Lasers Med Sci 35, 741–749 (2020). https://doi.org/10.1007/s10103-019-02931-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02931-0

Keywords

Navigation