Skip to main content
Log in

Dual effect of blue light on Fusariumsolani clinical corneal isolates in vitro

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The purpose was to investigate the effect of daylight-intensity blue light on F. solani isolated from the cornea of patients with fungal keratitis. Spore suspensions of 5 F. solani strains (one standard strain and 4 clinical corneal isolates) were prepared in 6-well plates. Blue light groups were irradiated by a light-emitting diode (LED) device with a peak wavelength of 454 nm at 0.5 mW/cm2 for 0 to 48 h, while the controls were maintained in darkness. Hyphal morphology in the 6-well plates was recorded at 0, 12, 24, 36, 48 h. One hundred microliters of spore suspensions of each strain at these five time points was transferred to SGA plates and cultured for 36 h at 29 °C; the number of colonies formed was counted as a measure of conidia quality and viability. Blue light has dual effects on F. solani. The hyphal length of F. solani exposed to blue light was significantly shorter than that of the control (P < 0.01), indicating that fungal growth was inhibited. Meanwhile, instead of reducing the viability of spores, blue light significantly enhanced the conidia quality and viability after at least 24 h irradiation. Daylight-intensity blue light exposure will inhibit the hyphal growth of F. solani but promote conidiation, which would be more harmful to fungal keratitis. Eliminating the influence of blue light for these patients should be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Garg P, Gopinathan U, Choudhary K et al (2000) Keratomycosis: clinical and microbiologic experience with dematiaceous fungi. Ophthalmology 107:574–580

    Article  CAS  Google Scholar 

  2. Maharana PK, Sharma N, Nagpal R, Jhanji V, Das S, Vajpayee RB (2016) Recent advances in diagnosis and management of mycotic keratitis. Indian J Ophthalmol 64(5):346–357

    Article  Google Scholar 

  3. Srinivasan M (2004) Fungal keratitis. Curr Opin Ophthalmol 15:321–327

    Article  CAS  Google Scholar 

  4. Tupaki-Sreepurna A, Al-Hatmi AMS, Kindo AJ, Sundaram M, de Hoog GS (2017) Multidrug-resistant Fusarium in keratitis: a clinic-mycological study of keratitis infections in Chennai, India. Mycoses 60:230–233

    Article  CAS  Google Scholar 

  5. Rose-Nussbaumer J, Venkatesh Prajna N, Tiruvengada Krishnan K, Mascaren-has J, Rajaraman R, Srinivasan M et al (2015) Vision-related quality-of-life outcomes in the mycotic ulcer treatment trial I: a randomized clinical trial. JAMA Ophthalmol 133:642–646

    Article  Google Scholar 

  6. Thomas PA, Kaliamurthy J (2013) Mycotic keratitis: epidemiology, diagnosis and management. Clin Microbiol Infect 19(3):210–220

    Article  CAS  Google Scholar 

  7. Oechsler RA, Feilmeier MR, Ledee D et al (2009) Utility of molecular sequence analysis of the ITS rRNA region for identification of Fusarium spp from ocular sources. Invest Ophthalmol Vis Sci 50:2230–2236

    Article  Google Scholar 

  8. O’Donnell K, Sarver BA, Brandt M et al (2007) Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitisoutbreaks of 2005 and 2006. J Clin Microbiol 45:2235–2248

    Article  Google Scholar 

  9. Herkert PF, Al-Hatmi AMS, de Oliveira Salvador GL, Muro MD, Pinheiro RL, Nucci M, Queiroz-Telles F, de Hoog GS, Meis JF (2019) Molecular characterization and antifungal susceptibility of clinical Fusarium species from Brazil. Front Microbiol 10:737

    Article  Google Scholar 

  10. Tupaki-Sreepurna A, Al-Hatmi AM, Kindo AJ, Sundaram M, de Hoog GS (2017) Multidrug-resistant Fusarium in keratitis: a clinico-mycological study of keratitis infections in Chennai. India Mycoses 60:230–233

    Article  CAS  Google Scholar 

  11. Coleman JJ (2016) The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Pathol 17:146–158

    Article  Google Scholar 

  12. Tomb RM, White TA, Coia JE, Anderson JG, MacGregor SJ, Maclean M (2018) Review of the Comparative Susceptibility of Microbial Species to Photoinactivation Using 380-480 nm Violet-Blue Light. Photochem Photobiol 94(3):445–458.

  13. Casas-Flores S, Rios-Momberg M, Rosales-Saavedra T, Martínez-Hernández P, Olmedo-Monfil V, Herrera-Estrella A (2006) Cross-talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot Cell 5:499–506

    Article  CAS  Google Scholar 

  14. Purschwitz J, Müller S, Kastner C, Fischer R (2006) Seeing the rainbow: light sensing in fungi. Curr Opin Microbiol 9:566–571

    Article  CAS  Google Scholar 

  15. Fanelli F, Schmidt-Heydt M, Haidukowski M, Susca A, Geisen R, Logrieco A, Mulè G (2012) Influence of light on growth, conidiation and fumonisin production by Fusarium verticillioides. Fungal Biol 116:241–248

    Article  CAS  Google Scholar 

  16. Fanelli F, Schmidt-Heydt M, Haidukowski M, Geisen R, Logrieco A, Mulè G (2012) Influence of light on growth, fumonisin biosynthesis and FUM1 gene expression by Fusarium proliferatum. Int J Food Microbiol 153:148–153

    Article  CAS  Google Scholar 

  17. De Lucca AJ, Carter-Wientjes C, Williams KA, Bhatnagar D (2012) Blue light (470 nm) effectively inhibits bacterial and fungal growth. Lett Appl Microbiol 55(6):460–466

    Article  Google Scholar 

  18. Trzaska WJ, Wrigley HE, Thwaite JE, May RC (2017) Species-specific antifungal activity of blue light. Sci Rep 7(1):4605

    Article  Google Scholar 

  19. Marek V, Mélik-Parsadaniantz S, Villette T, Montoya F, Baudouin C, Brignole-Baudouin F, Denoyer A (2018) Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions. Free Radic Biol Med 126:27–40

    Article  CAS  Google Scholar 

  20. Núñez-Álvarez C, Osborne NN (2019) Enhancement of corneal epithelium cell survival, proliferation and migration by red light: relevance to corneal wound healing. Exp Eye Res 180:231–241

    Article  Google Scholar 

  21. Anutarapongpan O, Maestre-Mesa J, Alfonso EC, O’Brien TP, Miller D (2018) Multiplex polymerase chain reaction assay for screening of mycotoxin genes from ocular isolates of Fusarium species. Cornea 37(8):1042–1046

    Article  Google Scholar 

  22. Hazlett L, Suvas S, McClellan S, Ekanayaka S (2016) Challenges of corneal infections. Expert Rev Ophthalmol 11:285–297

    Article  CAS  Google Scholar 

  23. Liang YI, Lu LM, Chen Y, Lin YK (2016) Photodynamic therapy as an antifungal treatment. Exp Ther Med 12:23–27

    Article  CAS  Google Scholar 

  24. Lembo AJ, Ganz RA, Sheth S, Cave D, Kelly C, Levin P, Kazlas PT, Baldwin PC 3rd, Lindmark WR, McGrath JR, Hamblin MR (2009) Treatment of Helicobacter pylori infection with intragastric violet light phototherapy: a pilot clinical trial. Lasers Surg Med 41:337–344

    Article  Google Scholar 

  25. Zhang Y, Zhu Y, Gupta A, Huang Y, Murray CK, Vrahas MS, Sherwood ME, Baer DG, Hamblin MR, Dai T (2014) Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections. J Infect Dis 209:1963–1971

    Article  CAS  Google Scholar 

  26. Zhang Y, Zhu Y, Chen J, Wang Y, Sherwood ME, Murray CK, Vrahas MS, Hooper DC, Hamblin MR, Dai T (2016) Antimicrobial blue light inactivation of Candida albicans: In vitro and in vivo studies. Virulence 7:536–545

    Article  CAS  Google Scholar 

  27. Lee HS, Cui L, Li Y et al (2016) Influence of light emitting diode-derived blue light overexposure on mouse ocular surface. PLoS One 11(8):e0161041

    Article  Google Scholar 

  28. Behar-Cohen F, Martinsons C, Viénot F et al (2011) Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Prog Retin Eye Res 30(4):239–257

    Article  CAS  Google Scholar 

  29. Huang C, Zhang P, Wang W, Xu Y, Wang M, Chen X, Dong X (2014) Long-term blue light exposure induces RGC-5 cell death in vitro: involvement of mitochondria-dependent apoptosis, oxidative stress, and MAPK signaling pathways. Apoptosis 19(6):922–932

    Article  CAS  Google Scholar 

  30. Tan KK (1976)Light-induced synchronous conidiation in the fungus Botrytis cinerea. J Gen Microbiol 93(2):278–282

    Article  CAS  Google Scholar 

  31. Kumagai T (1989) Temperature and mycochrome system in near-UV light inducible and blue light reversible photoinduction of conidiation Alternaria tomato. Photochem Photobiol Sci 50:793e798

    Google Scholar 

  32. Zhu JC, Wang XJ, Zhang G, Su J, Zhu M (2006) Glucoamylase enhancement regulated by blue light in Aspergillus niger. Wei Sheng Wu Xue Bao 46(5):734–739

    CAS  PubMed  Google Scholar 

  33. Kiryu H, Yoshida S, Suenaga Y, Asahi M (1991) Invasion and survival of Fusarium solani in the dexamethasone-treated cornea of rabbits. J Med Vet Mycol 29(6):395–406

    Article  CAS  Google Scholar 

  34. Robertson MD, Seaton A, Milne LJ, Raeburn JA (1987) Resistance of spores of Aspergillus fumigatus to ingestion by phagocytic cells. Thorax 42(6):466–472

    Article  CAS  Google Scholar 

  35. Choy CK, Benzie IF, Cho P (2005)UV-mediated DNA strand breaks in corneal epithelial cells assessed using the comet assay procedure. Photochem Photobiol 81(3):493–497

    Article  CAS  Google Scholar 

  36. Sliney DH (2006) Risks of occupational exposure to optical radiation. Med Lav 97(2):215–220

    CAS  PubMed  Google Scholar 

  37. Stamatacos C, Harrison JL (2014) The possible ocular hazards of LED dental illumination applications. J Mich Dent Assoc 96(4):34–39

    PubMed  Google Scholar 

  38. Moorhead S, Maclean M, MacGregor SJ, Anderson JG (2016) Comparative sensitivity of Trichophyton and Aspergillus conidia to inactivation by violet-blue light exposure. Photomed Laser Surg 34:36–41

    Article  Google Scholar 

  39. Lee HS, Cui L, Li Y, Choi JS, Choi JH, Li ZR, Kim GE, Choi W, Yoon KC (2016) Correction: influence of light emitting diode-derived blue light overexposure on mouse ocular surface. PLoS One 11(11):e0167671

    Article  Google Scholar 

  40. Zhao ZC, Zhou Y, Tan G, Li J (2018) Research progress about the effect and prevention of blue light on eyes. Int J Ophthalmol 11(12):1999–2003

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (81670821).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Li Yingyu and Zhang Pei. The first draft of the manuscript was written by Li Yingyu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wei Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, P., Huang, C. et al. Dual effect of blue light on Fusariumsolani clinical corneal isolates in vitro. Lasers Med Sci 35, 1299–1305 (2020). https://doi.org/10.1007/s10103-019-02911-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02911-4

Keywords

Navigation