Skip to main content
Log in

Long-term blue light exposure induces RGC-5 cell death in vitro: involvement of mitochondria-dependent apoptosis, oxidative stress, and MAPK signaling pathways

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The mechanism of blue light-induced retinal ganglion cell (RGC) injury is poorly understood. In this study, we established a patented light-emitting diode-based system to study the effects of long-term blue light exposure under culture conditions on RGC-5 cells. Long-term blue light exposure significantly reduced cell viability in a time-dependent manner and induced apoptosis and necrosis in RGC-5 cells. Long-term blue light exposure marked an increase in the expression of Bax and active Caspase-3 (p17), which was accompanied by Bcl-2 down-regulation, and displayed features of the mitochondria-dependent apoptosis pathway. Blue light exposure also increased the generation of reactive oxygen species (ROS), and was a strong inducer of ROS-sensitive protein nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Moreover, blue light exposure constitutively activated p38 mitogen-activated protein kinases and c-Jun NH2-terminal kinase (JNK), as well as induced the phosphorylation of extracellular signal-regulated kinase in the early phase, in blue light-exposed RGC-5 cells. The protein expression of c-jun and c-fos was further enhanced after RGC-5 cells were exposed to blue light. Taken together, these findings indicated that blue light induced RGC-5 cell line death in dependence upon exposure duration. The potential mechanisms for this phenomenon might be via activated mitochondria-dependent apoptosis, increased ROS production and protein expressions of Nrf2 and HO-1, and activated JNK/p38 MAPK signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMD:

Age related macular degeneration

RPE:

Retinal pigment epithelium

RGC:

Retinal ganglion cell

ROS:

Reactive oxygen species

AIF:

Apoptosis-inducing factor

MAPK:

Mitogen-activated protein kinase

ERK:

Extracellular signal-regulated protein kinase

JNK:

c-Jun NH2-terminal kinase

LED:

Light-emitting diode

DMEM:

Dulbecco’s modified Eagle’s media

EDTA:

Ethylene diamine tetra acetic acid

PBS:

Phosphate buffer solution

FBS:

Fetal bovine serum

CCK-8:

Cell counting kit-8

PI:

Propidium iodide

H2DCFDA:

2′–7′ Dichlorofluorescence diacetate

FITC:

Fluorescein isothiocyanate

RIPA:

Radioimmunoprecipitation

BCA:

Bicinchoninic acid

Nrf2:

Nuclear factor erythroid 2-related factor 2

HO-1:

Heme oxygenase-1

HRP:

Horseradish peroxidase

SD:

Standard deviation

TUNEL:

Terminal-deoxynucleoitidyl transferase mediated nick end labeling

References

  1. Algvere PV, Marshall J, Seregard S (2006) Age-related maculopathy and the impact of blue light hazard. Acta Ophthalmol Scand 84:4–15

    Article  PubMed  CAS  Google Scholar 

  2. van der Burght BW, Hansen M, Olsen J et al (2013) Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells. Acta Ophthalmol 91:e537–e545

    Article  PubMed  CAS  Google Scholar 

  3. Ebert S, Walczak Y, Reme C, Langmann T (2012) Microglial activation and transcriptomic changes in the blue light-exposed mouse retina. Adv Exp Med Biol 723:619–632

    Article  PubMed  CAS  Google Scholar 

  4. Marco-Gomariz MA, Hurtado-Montalban N, Vidal-Sanz M, Lund RD, Villegas-Perez MP (2006) Phototoxic-induced photoreceptor degeneration causes retinal ganglion cell degeneration in pigmented rats. J Comp Neurol 498:163–179

    Article  PubMed  CAS  Google Scholar 

  5. Garcia-Ayuso D, Salinas-Navarro M, Agudo M et al (2010) Retinal ganglion cell numbers and delayed retinal ganglion cell death in the P23H rat retina. Exp Eye Res 91:800–810

    Article  PubMed  CAS  Google Scholar 

  6. Garcia-Ayuso D, Salinas-Navarro M, Agudo-Barriuso M, Alarcon-Martinez L, Vidal-Sanz M, Villegas-Perez MP (2011) Retinal ganglion cell axonal compression by retinal vessels in light-induced retinal degeneration. Mol Vis 17:1716–1733

    PubMed Central  PubMed  Google Scholar 

  7. Sang A, Cheng Y, Lu H, Chen D, Gao R, Shen A (2011) Light-induced retinal ganglion cell damage in vivo involves Dexras1. Mol Vis 17:134–143

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Wang S, Villegas-Perez MP, Holmes T et al (2003) Evolving neurovascular relationships in the RCS rat with age. Curr Eye Res 27:183–196

    Article  PubMed  CAS  Google Scholar 

  9. Villegas-Perez MP, Vidal-Sanz M, Lund RD (1996) Mechanism of retinal ganglion cell loss in inherited retinal dystrophy. NeuroReport 7:1995–1999

    Article  PubMed  CAS  Google Scholar 

  10. Li GY, Osborne NN (2008) Oxidative-induced apoptosis to an immortalized ganglion cell line is caspase independent but involves the activation of poly(ADP-ribose)polymerase and apoptosis-inducing factor. Brain Res 1188:35–43

    Article  PubMed  CAS  Google Scholar 

  11. Osborne NN, Li GY, Ji D, Mortiboys HJ, Jackson S (2008) Light affects mitochondria to cause apoptosis to cultured cells: possible relevance to ganglion cell death in certain optic neuropathies. J Neurochem 105:2013–2028

    Article  PubMed  CAS  Google Scholar 

  12. Li GY, Fan B, Ma TH (2011) Visible light may directly induce nuclear DNA damage triggering the death pathway in RGC-5 cells. Mol Vis 17:3279–3289

    PubMed Central  PubMed  CAS  Google Scholar 

  13. del Olmo-Aguado S, Manso AG, Osborne NN (2012) Light might directly affect retinal ganglion cell mitochondria to potentially influence function. Photochem Photobiol 88:1346–1355

    Article  PubMed  CAS  Google Scholar 

  14. Bennet D, Kim MG, Kim S (2013) Light-induced anatomical alterations in retinal cells. Anal Biochem 436:84–92

    Article  PubMed  CAS  Google Scholar 

  15. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Ji D, Kamalden TA, del Olmo-Aguado S, Osborne NN (2011) Light- and sodium azide-induced death of RGC-5 cells in culture occurs via different mechanisms. Apoptosis 16:425–437

    Article  PubMed  CAS  Google Scholar 

  17. Balaiya S, Murthy RK, Brar VS, Chalam KV (2010) Evaluation of ultraviolet light toxicity on cultured retinal pigment epithelial and retinal ganglion cells. Clin Ophthalmol 4:33–39

    PubMed Central  PubMed  Google Scholar 

  18. Wood JP, Lascaratos G, Bron AJ, Osborne NN (2008) The influence of visible light exposure on cultured RGC-5 cells. Mol Vis 14:334–344

    PubMed Central  CAS  Google Scholar 

  19. Jung SH, Kang KD, Ji D et al (2008) The flavonoid baicalin counteracts ischemic and oxidative insults to retinal cells and lipid peroxidation to brain membranes. Neurochem Int 53:325–337

    Article  PubMed  CAS  Google Scholar 

  20. Wood JP, Lascaratos G, Bron AJ, Osborne NN (2007) The influence of visible light exposure on cultured RGC-5 cells. Mol Vis 14:334–344

    PubMed Central  Google Scholar 

  21. Lascaratos G, Ji D, Wood JP, Osborne NN (2007) Visible light affects mitochondrial function and induces neuronal death in retinal cell cultures. Vis Res 47:1191–1201

    Article  PubMed  CAS  Google Scholar 

  22. Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K (2006) Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ 13:730–737

    Article  PubMed  CAS  Google Scholar 

  23. Junttila MR, Li SP, Westermarck J (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22:954–965

    Article  PubMed  CAS  Google Scholar 

  24. Krishnamoorthy RR, Agarwal P, Prasanna G et al (2001) Characterization of a transformed rat retinal ganglion cell line. Brain Res Mol Brain Res 86:1–12

    Article  PubMed  CAS  Google Scholar 

  25. Ji YB, Qu ZY, Zou X (2011) Juglone-induced apoptosis in human gastric cancer SGC-7901 cells via the mitochondrial pathway. Exp Toxicol Pathol 63:69–78

    Article  PubMed  CAS  Google Scholar 

  26. Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 103:2653–2658

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Huang C, Zhang J, Ao M et al (2012) Combination of retinal pigment epithelium cell-conditioned medium and photoreceptor outer segments stimulate mesenchymal stem cell differentiation toward a functional retinal pigment epithelium cell phenotype. J Cell Biochem 113:590–598

    Article  PubMed  CAS  Google Scholar 

  28. Seko Y, Pang J, Tokoro T, Ichinose S, Mochizuki M (2001) Blue light-induced apoptosis in cultured retinal pigment epithelium cells of the rat. Graefes Arch Clin Exp Ophthalmol 239:47–52

    Article  PubMed  CAS  Google Scholar 

  29. Pang J, Seko Y, Tokoro T (1999) Processes of blue light-induced damage to retinal pigment epithelial cells lacking phagosomes. Jpn J Ophthalmol 43:103–108

    Article  PubMed  CAS  Google Scholar 

  30. Cai SJ, Yan M, Mao YQ, Zhou Y, Liu GJ (2006) Relationship between blue light-induced apoptosis and mitochondrial membrane potential and cytochrome C in cultured human retinal pigment epithelium cells. Zhonghua Yan Ke Za Zhi 42:1095–1102

    PubMed  CAS  Google Scholar 

  31. Zhang M, Xu G, Liu W, Ni Y, Zhou W (2012) Role of fractalkine/CX3CR1 interaction in light-induced photoreceptor degeneration through regulating retinal microglial activation and migration. PLoS One 7:e35446

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  32. Roehlecke C, Schumann U, Ader M, Knels L, Funk RH (2011) Influence of blue light on photoreceptors in a live retinal explant system. Mol Vis 17:876–884

    PubMed Central  PubMed  CAS  Google Scholar 

  33. Laabich A, Vissvesvaran GP, Lieu KL et al (2006) Protective effect of crocin against blue light- and white light-mediated photoreceptor cell death in bovine and primate retinal primary cell culture. Invest Ophthalmol Vis Sci 47:3156–3163

    Article  PubMed  Google Scholar 

  34. Grasl-Kraupp B, Ruttkay-Nedecky B, Koudelka H, Bukowska K, Bursch W, Schulte-Hermann R (1995) In situ detection of fragmented DNA (TUNEL assay) fails to discriminate among apoptosis, necrosis, and autolytic cell death: a cautionary note. Hepatology 21:1465–1468

    PubMed  CAS  Google Scholar 

  35. Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M (2003) Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8:379–391

    Article  PubMed  CAS  Google Scholar 

  36. Exner M, Minar E, Wagner O, Schillinger M (2004) The role of heme oxygenase-1 promoter polymorphisms in human disease. Free Radic Biol Med 37:1097–1104

    Article  PubMed  CAS  Google Scholar 

  37. Eom HJ, Choi J (2009) Oxidative stress of CeO2 nanoparticles via p38–Nrf-2 signaling pathway in human bronchial epithelial cell, Beas-2B. Toxicol Lett 187:77–83

    Article  PubMed  CAS  Google Scholar 

  38. Cuadrado A, Rojo AI (2008) Heme oxygenase-1 as a therapeutic target in neurodegenerative diseases and brain infections. Curr Pharm Des 14:429–442

    Article  PubMed  CAS  Google Scholar 

  39. Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802:396–405

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by National Natural Science Foundation of China (No. 81170888).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Zhang, P., Wang, W. et al. Long-term blue light exposure induces RGC-5 cell death in vitro: involvement of mitochondria-dependent apoptosis, oxidative stress, and MAPK signaling pathways. Apoptosis 19, 922–932 (2014). https://doi.org/10.1007/s10495-014-0983-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-0983-2

Keywords

Navigation