Skip to main content

Advertisement

Log in

Evaluation of irradiation effects of near-infrared free-electron-laser of silver alloy for dental application

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

In the application of lasers in dentistry, there is a delicate balance between the benefits gained from laser treatment and the heat-related damage arising from laser irradiation. Hence, it is necessary to understand the different processes associated with the irradiation of lasers on dental materials. To obtain insight for the development of a safe and general-purpose laser for dentistry, the present study examines the physical effects associated with the irradiation of a near-infrared free-electron laser (FEL) on the surface of a commonly used silver dental alloy. The irradiation experiments using a 2900-nm FEL confirmed the formation of a pit in the dental alloy. The pit was formed with one macro-pulse of FEL irradiation, therefore, suggesting the possibility of efficient material processing with an FEL. Additionally, there was only a slight increase in the silver alloy temperature (less than 0.9 °C) despite the long duration of FEL irradiation, thus inferring that fixed prostheses in the oral cavity can be processed by FEL without thermal damage to the surrounding tissue. These results indicate that dental hard tissues and dental materials in the oral cavity can be safely and efficiently processed by the irradiation of a laser, which has the high repetition rate of a femtosecond laser pulse with a wavelength around 2900 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stern RH, Sognnaes RF (1964) Laser beam effect on dental hard tissue. J Dent Res 43:873

    Google Scholar 

  2. Sharma N, Williams C, Angadi P, Jethlia H (2013) Application of lasers in dentistry. Res Rev J Dent Sci 1:22–25

    Google Scholar 

  3. Siniaeva ML, Siniavsky MN, Pashinin VP, Mamedov AA, Konov VI, Kononenko VV (2009) Laser ablation of dental materials using a microsecond Nd: YAG laser. Laser Phys 19:1056–1060

    Article  CAS  Google Scholar 

  4. sadat Madani A, Astaneh PA, Shahabi S, Nakhaei MR, Bagheri HG, Chiniforush N (2013) Influence of different power outputs of intraoral Nd:YAG laser on shear bond strength of a resin cement to nickel-chromium dental alloy. Lasers Med Sci 28:229–234

    Article  Google Scholar 

  5. Shibuya I, Nishiyama N, Hayakawa T, Koishi I, Nemoto K (2004) Intraoral laser welding—part 1. Effect of laser irradiation on temperature rise. J J Dent Mater 23:495–500 (in Japanese)

    Google Scholar 

  6. Fornaini C, Merigo E, Cernavin I, Lòpez de Castro G, Vescovi P (2012, 2012) Intraoral laser welding (ILW) in implant prosthetic dentistry: case report. Case Rep Dent:939141. doi:10.1155/2012/839141

  7. Ichikawa T, Hayasaki Y, Fujita K, Nagao K, Murata M, Kawano T, Chen J (2006) Femtosecond pulse laser-oriented recording on dental prostheses: a trial introduction. Dent Mater J 25:733–736

    Article  PubMed  Google Scholar 

  8. Naito Y, Meinar AN, Iwawaki Y, Kashiwabara T, Goto T, Ito T, Sakuma T, Ichikawa T (2013) Recording of individual identification information on dental prostheses using fluorescent material and ultraviolet light. Int J Prosthodont 26:172–174

    Article  PubMed  Google Scholar 

  9. Zach L, Cohen G (1965) Pulp response to externally applied heat. Oral Surg Oral Med Oral Pathol 19:515–530

    Article  CAS  PubMed  Google Scholar 

  10. Eriksson AR, Albrektsson T (1983) Temperature threshold levels for heat-induced bone tissue injury: a vital-microscopic study in the rabbit. J Prosthet Dent 50:101–107

    Article  CAS  PubMed  Google Scholar 

  11. Eriksson RA, Albrektsson T (1984) The effect of heat on bone regeneration: an experimental study in the rabbit using the bone growth chamber. J Oral Maxillofac Surg 42:705–711

    Article  CAS  PubMed  Google Scholar 

  12. Armengol V, Jean A, Marion D (2000) Temperature rise during Er: YAG and Nd: YAP laser ablation of dentin. J Endodontics 26:138–141

    Article  CAS  Google Scholar 

  13. Hirota F, Furumoto K (2003) Temperature rise caused by laser (CO 2, Nd: YAG, Er: YAG) irradiation of teeth. Int Congr Ser 1248:301–304

    Article  Google Scholar 

  14. Colucci V, do Amaral FL, Pécora JD, Palma-Dibb RG, Corona SA (2009) Water flow on erbium:yttrium-aluminum-garnet laser irradiation: effects on dental tissues. Lasers Med Sci 24:811–818

    Article  PubMed  Google Scholar 

  15. Geminiani A, Caton JG, Romanos GE (2011) Temperature increase during CO2 and Er:YAG irradiation on implant surfaces. Implant Dent 20:379–382

    PubMed  Google Scholar 

  16. Leja C, Geminiani A, Caton J, Romanos GE (2013) Thermodynamic effects of laser irradiation of implants placed in bone: an in vitro study. Lasers Med Sci 28:1435–1440

    Article  PubMed  Google Scholar 

  17. Ji L, Li L, Devlin H, Liu Z, Jiao J, Whitehead D (2012) Ti: sapphire femtosecond laser ablation of dental enamel, dentine, and cementum. Lasers Med Sci 24:197–204

    Article  Google Scholar 

  18. Chichkov BN, Momma C, Nolte S, von Alvensleben F, Tünnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A Mater Sci Process 63:109–115

    Article  Google Scholar 

  19. Leitz KH, Redlingshöfer B, Reg Y, Otto A, Schmidt M (2011) Metal ablation with short and ultrashort laser pulses. Phys Procedia 12:230–238

    Article  CAS  Google Scholar 

  20. Nishimura A, Yamaushi T, Minehara E (2004) Demonstration of material processing using JAERI-FEL. In: Minehara EJ, Hajima R, Sawamura M (eds) Free electron lasers 2003. Elsevier, Amsterdam, pp II57–II58

    Chapter  Google Scholar 

  21. Junbiao Z, Yonggui L, Nianqing L, Guoqing Z, Minkai W, Gan W, Xuepin Y, Yuying H, Wei H, Yanmei D, Xuejun G (2001) Primary experimental studies on mid-infrared FEL irradiation on dental substances at BFEL. Nuclear Instr Meth A 475:630–634

    Article  Google Scholar 

  22. Spector N, Reinisch L, Spector J, Ellis DL (2002) Free-electron laser and heat-conducting templates: a study of reducing cutaneous lateral thermal damage. Lasers Surg Med 30:117–122

    Article  PubMed  Google Scholar 

  23. Tanaka T, Hayakawa K, Hayakawa Y, Mori A, Nogami K, Sato I, Yokoyama K (2004) Tunability and power characteristics of the LEBRA infrared FEL. Proc 2004 FEL Conf: 247–250

  24. Nakao K, Hayakawa K, Hayakawa Y, Inagaki M, Nogami K, Sakai T, Tanaka T (2012) Pulse structure measurement of near-infrared FEL in burst-mode operation of LEBRA linac. Proc FEL 2012:472–474

  25. Sakae T, Sato Y, Numata Y, Suwa T, Hayakawa T, Suzuki K, Kuwada T, Hayakawa K, Hayakawa Y, Tanaka T, Sato I (2007) Thermal ablation of FEL irradiation using gypsum as an indicator. Lasers Med Sci 22:15–20

    Article  PubMed  Google Scholar 

  26. Sakae T, Sato Y, Tanimoto Y, Higa M, Oinuma H, Kozawa Y, Okada H, Yamamoto H, Hayakawa T, Nemoto K, Sakai T, Nogami K, Mori A, Kuwada T, Hayakawa Y, Tanaka T, Hayakawa K, Sato I (2005) Pit formation in human enamel and dentin irradiated using the 2.94 μm LEBRA-free electron laser. Int J Oral Med Sci 4:8–13

    Article  Google Scholar 

  27. Nemoto S, Iwai H, Suzuki H, Kamiya N, Iwai H, Iki K, Ikemi T (2010) Increased temperature and morphological change of bovine dentin irradiated by a free electron laser. Jpn J Conserv Dent 53:419–427 (in Japanese)

    Google Scholar 

  28. Nemoto S (2012) Dentin abration with free electron laser. Jpn J Conserv Dent 55:185–194 (in Japanese)

    Google Scholar 

  29. Sakae T, Hayakawa K, Hayakawa Y, Inagaki M, Kuwada T, Nakao K, Nogami K, Sato I, Tanaka T, Kii T, Ohgaki H, Zen H (2012) Pit Formation on Dental Hard Tissues Using Two Different Free Electron Laser Sources, LEBRA-FEL and KU-FEL. Proc FEL 2012:563–565

  30. Stasic J, Trtica M, Gakovic B, Petrovic S, Batani D, Desai T, Panjan P (2009) Surface modifications of AISI 1045 steel created by high intensity 1064 and 532nm picosecond Nd: YAG laser pulses. Appl Surf Sci 255:4474–4478

    Article  CAS  Google Scholar 

  31. Hashida M, Semerok AF, Gobert O, Petite G, Izawa Y (2002) Ablation threshold dependence on pulse duration for copper. Appl Surf Sci 197:862–867

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. Norihiro Nishiyama and former Prof. Takuji Ikemi of the Nihon University School of Density at Matsudo for their technical advice, and to all the staff of LEBRA for operating the machinery and assisting in the experiments. We also thank all the staff of the Department of Crown Bridge Prosthodontics for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Kuwada-Kusunose.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Role of funding source

No outside funding was received for this study.

Ethical approval

The authors have nothing to disclose.

Informed consent

The authors have nothing to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwada-Kusunose, T., Kusunose, A., Wakami, M. et al. Evaluation of irradiation effects of near-infrared free-electron-laser of silver alloy for dental application. Lasers Med Sci 32, 1349–1355 (2017). https://doi.org/10.1007/s10103-017-2251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2251-5

Keywords

Navigation