Skip to main content
Log in

Model study of combined electrical and near-infrared neural stimulation on the bullfrog sciatic nerve

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

This paper implemented a model study of combined electrical and near-infrared (808 nm) neural stimulation (NINS) on the bullfrog sciatic nerve. The model includes a COMSOL model to calculate the electric-field distribution of the surrounding area of the nerve, a Monte Carlo model to simulate light transport and absorption in the bullfrog sciatic nerve during NINS, and a NEURON model to simulate the neural electrophysiology changes under electrical stimulus and laser irradiation. The optical thermal effect is considered the main mechanism during NINS. Therefore, thermal change during laser irradiation was calculated by the Monte Carlo method, and the temperature distribution was then transferred to the NEURON model to stimulate the sciatic nerve. The effects on thermal response by adjusting the laser spot size, energy of the beam, and the absorption coefficient of the nerve are analyzed. The effect of the ambient temperature on the electrical stimulation or laser stimulation and the interaction between laser irradiation and electrical stimulation are also studied. The results indicate that the needed stimulus threshold for neural activation or inhibition is reduced by laser irradiation. Additionally, the needed laser energy for blocking the action potential is reduced by electrical stimulus. Both electrical and laser stimulation are affected by the ambient temperature. These results provide references for subsequent animal experiments and could be of great help to future basic and applied studies of infrared neural stimulation (INS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Richter CP, Matic AI, Well J et al (2011) Neural stimulation with optical radiation. Laser Photonics Rev 5(1):68–80

    Article  CAS  Google Scholar 

  2. Izzo AD, Walsh JT, Jansen ED et al (2007) Optical parameter variability in laser nerve stimulation: a study of pulse duration, repetition rate, and wavelength. IEEE Trans Biomed Eng 54(6):1108–1114

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ritcher CP, Bayon R, Izzo AD et al (2008) Ooptical stimulation of auditory neurons: effects of acute and chronic deafening. Hear Res 242(1–2):42–51

    Google Scholar 

  4. Wells J, Kao C, Konrad P et al (2007) Biophysical mechanisms of transient optical stimulation of peripheral nerve. J Biophys 93(7):2567–2580

    Article  CAS  Google Scholar 

  5. Izzo AD, Walsh JT, Ralph H et al (2008) Laser stimulation of auditory neurons: effect of shorter pulse duration and penetration depth. J Biophys 94(8):3159–3166

    Article  CAS  Google Scholar 

  6. Duke AR, Peterson E, Mackanos MA et al (2012) Hybrid electro-optical stimulation of the rat sciatic nerve induces force generation in the plantarflexor muscles. J Neural Eng 9(6):066006-1–066006-12

    Article  Google Scholar 

  7. Duke AR, Cayce JM, Malphrus JD et al (2009) Combined optical and electrical stimulation of neural tissue in vivo. J Biomed Opt 14(6):060501-1–060501-3

    Article  Google Scholar 

  8. Duke AR, Lu H, Jenkins MW et al (2012) Spatial and temporal variability in response to hybrid electro-optical stimulation. J Neural Eng 9(3):36003–36017

    Article  Google Scholar 

  9. Llewellyn ME, Thompson KR, Deisseroth K, Delp SL (2010) Orderly recruitment of motor units under optical control in vivo. Nature Med 16(10):1161–1165

    Article  CAS  PubMed  Google Scholar 

  10. McCaughey RG, Chlebicki C, Wong BJF (2010) Novel wavelengths for laser nerve stimulation. Lasers Surg Med 42(1):69–75

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eom K, Kim J, Choi JM et al (2014) Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small 10(19):3853–3857

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, Guo L (2016) Nanomaterial-enabled neural stimulation. Front Neurosci 10(69):1–7

    Google Scholar 

  13. Schiefer MA, Triolo RJ, Tyler DJ (2008) A model of selective activation of the femoral nerve with a flat interface nerve electrode for a lower extremity neuroprosthesis. IEEE Trans Neural syst Rehabil Eng 16(2):195–204

    Article  PubMed  PubMed Central  Google Scholar 

  14. Goodall EV, Kosterman LM, Holsheimer J, Struijk JJ (1995) Modeling study of activation and propagation delays during stimulation of peripheral nerve fibers with a tripolar cuff electrode. IEEE Trans Rehabil Eng 3(3):272–282

    Article  Google Scholar 

  15. Mou Z, Triantics IF, Woods VM, Toumazou C, Nikolic K (2012) A simulation study of the combined thermoelectric extracellular stimulation of the sciatic nerve of the Xenopus laevis: the localized transient heat block. IEEE Trans Biomed Eng 59(6):1758–1769

    Article  PubMed  Google Scholar 

  16. Vitkaya AY, Seker SS (2016) Study of temperature distribution in light-tissue interaction using the FEM. Turk J Electr Eng Co 24(3):807–819

    Google Scholar 

  17. Thompson AC, Wade SA, Brown WG, Stoddart PR (2012) Modeling of light absorption in tissue during infrared neural stimulation. J Biomed Opt 17(7):628–628

    Article  Google Scholar 

  18. Fanjul-Velez F, Romanov OG, Arce-Diego JL (2009) Efficient 3D numerical approach for temperature prediction in laser irradiated biological tissues. Comput Biol Med 39(9):810–817

    Article  PubMed  Google Scholar 

  19. Wang L, Jacques SL, Zheng L (1995) MCML-Monte Carlo modeling of light transport in multi-layered tissues. Comput Meth Prog Bio 47(2):131–146

    Article  CAS  Google Scholar 

  20. Carnevale NT, Hines ML (2006) The neuron book. Cambridge Univ, Press, Cambridge, UK

    Book  Google Scholar 

  21. Yoon G, Welch AJ, Motamedi M, Gemert MV (1987) Development and application of three-dimensional light distribution model for laser irradiated tissue. IEEE J Quantum Elect 23(10):1721–1733

    Article  Google Scholar 

  22. Mobley J, Vo-Dinh T (2003) Optical properties of tissue. In: Vo-Dinh T (ed) Biomedical photonics handbook. CRC Press, Boca Raton, pp 2-1–2-70

    Google Scholar 

  23. Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44(247):335–341

    Article  CAS  PubMed  Google Scholar 

  24. Prahl SA et al (1989) A Monte Carlo model of light propagation in tissue. Proc SPIE 5:102–111

    Google Scholar 

  25. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Bio 58(11):37–61

    Article  Google Scholar 

  26. Takata AN, Zaneveld L, Richter W (1977) Laser-induced thermal damage in skin. USAF School Aerospace Med Brooks AFB, TX, Rep., SAM-TR-77-38

  27. Biswas TK, Luu TM (2011) In vivo MR measurement of refractive index, relative water content and T2 relaxation time of various brain lesions with clinical application to discriminate brain lesions. Internet J Radiol 13(1):p1-1–p1-9

    Google Scholar 

  28. Frankenhaeuser B, Huxley AF (1964) The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage clamp data. J Physiol 171(2):302–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. Hines, Xenopus myelinated neuron (Frankenhaeuser & Huxley 1964), coded in NEURON[online]. Available: http://senselab.med.yale.edu/modeldb

  30. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4th edn. McGraw-Hill, New York

    Google Scholar 

  31. Hutchinson NA, Koles ZJ, Smith RS (1970) Conduction velocity in myelinated nerve fibres of Xenopus laevis. J Physiol 208(2):279–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moore JW, Joyner RW, Brill MH, Waxman SD, NajarJoa M (1978) Simulations of conduction in uniform myelinated fibers. Relative sensitivity to changes in nodal and internodal parameters. Biophys J 21(2):147–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang S, Yang F, Zhou C et al (2009) Temperature-dependent activation of neurons by continuous near-infrared laser. Cell Biochem Biophys 53(1):33–42

    Article  CAS  PubMed  Google Scholar 

  35. Weiss TF (1996) Cellular biophysics. MIT Press, Cambridge, MA

    Google Scholar 

  36. Fribance S, Wang J, Roppolo JR, Groat WC, Tai C (2016) Axonal model for temperature stimulation. J Comput Neurosci 41(2):185–192

    Article  PubMed  Google Scholar 

  37. Shapiro MG, Homma K, Villarreal S et al (2012) Infrared light excites cells by changing their electrical capacitance. Nature Communications 3:736-1–736-10

    Article  Google Scholar 

  38. Leuchtag HR (1995) Fit of the dielectric anomaly of squid axon membrane near heat-block temperature to the ferroelectric Curie-Weiss law. Biophys Chem 53(3):197–205

    Article  CAS  PubMed  Google Scholar 

  39. Palti Y, Adelman WJ Jr (1969) Measurement of axonal membrane conductances and capacity by means of a varying potential control voltage clamp. J Membrane Biol 1:431–458

    Article  CAS  Google Scholar 

  40. Levy M, Mizrahi J, Susak Z (1990) Recruitment, force and fatigue characteristics of quadriceps muscles of paraplegics isometrically activated by surface functional electrical stimulation. J Biomed Eng 12(2):150–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nature Science Foundation of China Grant (No. 31500796).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongxia Mou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This is a simulation study, so for this type of study formal consent is not required. And this article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, M., Mou, Z. Model study of combined electrical and near-infrared neural stimulation on the bullfrog sciatic nerve. Lasers Med Sci 32, 1163–1172 (2017). https://doi.org/10.1007/s10103-017-2222-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-017-2222-x

Keywords

Navigation