Skip to main content

Advertisement

Log in

Metabolic activity of odontoblast-like cells irradiated with blue LED (455 nm)

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Blue light emitting diodes (LEDs) are frequently used in dentistry for light activation of resin-based materials; however, their photobiostimulatory effects have not yet been fully investigated. This study aimed to investigate the effect of blue LED (455 nm) on the metabolism of odontoblast-like cells MDPC-23. Energy doses of 2 and 4 J/cm2 were used at 20 mW/cm2 fixed power density. MDPC-23 cells were seeded at 10,000 cells/cm2 density in Dulbecco’s modified Eagle’s medium (DMEM) containing 10 % fetal bovine serum (FBS). After 12 h, the culture medium was replaced with new DMEM supplemented with 0.5 % of FBS, and the cells were incubated for further 12 h. After that, single irradiation was performed to the culture, under selected parameters. Cell viability evaluations (Alamar Blue Assay, n = 12), number of viable cells (Trypan Blue Assay, n = 12), morphological analysis by scanning electron microscopy (SEM, n = 2), gene expression (n = 6) of alkaline phosphatase (Alp), collagen (Col-1a1), and dental matrix protein (Dmp-1) (quantitative polymerase chain reaction (qPCR)) were performed 72 h after irradiation. Data were analyzed by Kruskal-Wallis, ANOVA, and Tukey tests (p < 0.05). Direct light application at 4 J/cm2 energy dose had no negative effects on cell viability, while irradiation with 2 J/cm2 reduced cell metabolism. None of doses affected the number of viable cells compared with the control group. The two energy doses downregulated the expression of Alp; however, expression of Col-1a1 and Dmp-1 had no alteration. Cells presented change in the cytoskeleton only when irradiated with 2 J/cm2. In conclusion, the blue LED (455 nm) irradiation, under the evaluated parameters, had no biostimulatory effects on MDPC-23 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rueggeberg FA (2011) State-of-the-art: dental photocuring—a review. Dent Mater 27:39–52. doi:10.1016/j.dental.2010.10.021

    Article  PubMed  CAS  Google Scholar 

  2. Attik GN, Pradelle-Plasse N, Campos D, Colon P, Grosgogeat B (2013) Toxicity evaluation of two dental composites: three-dimensional confocal laser scanning microscopy time-lapse imaging of cell behavior. Microsc Microanal 19:596–607. doi:10.1017/S1431927613000433

    Article  PubMed  CAS  Google Scholar 

  3. Michaud PL, Price RB, Labrie D, Rueggeberg FA, Sullivan B (2014) Localised irradiance distribution found in dental light curing units. J Dent 42:129–139. doi:10.1016/j.jdent.2013.11.014

    Article  PubMed  CAS  Google Scholar 

  4. Weiss RA, McDaniel DH, Geronemus RG, Weiss MA, Beasley KL, Munavalli GM, Bellew SG (2005) Clinical experience with light-emitting diode (LED) photomodulation. Dermatol Surg 31:1199–1205

    Article  PubMed  CAS  Google Scholar 

  5. Liebmann J, Born M, Kolb-Bachofen V (2010) Blue-light irradiation regulates proliferation and differentiation in human skin cells. J Invest Dermatol 130:259–269. doi:10.1038/jid.2009.194

    Article  PubMed  CAS  Google Scholar 

  6. AlGhamdi KM, Kumar A, Moussa NA (2012) Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249. doi:10.1007/s10103-011-0885-2

    Article  PubMed  Google Scholar 

  7. Holder MJ, Milward MR, Palin WM, Hadis MA, Cooper PR (2012) Effects of red light-emitting diode irradiation on dental pulp cells. J Dent Res 91:961–966

    Article  PubMed  CAS  Google Scholar 

  8. Carroll JD, Milward MR, Cooper PR, Hadis M, Palin WM (2014) Developments in low level light therapy (LLLT) for dentistry. Dent Mater 30:465–475. doi:10.1016/j.dental.2014.02.006

    Article  PubMed  Google Scholar 

  9. Huang YY, Chen ACH, Carroll JD, Hamblin MR (2009) Biphasic dose response in low level light therapy. Dose-Response 7:358–383. doi:10.2203/dose-response.09-027.Hamblin

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lewis JB, Wataha JC, Messer RL, Caughman GB, Yamamoto T, Hsu SD (2005) Blue light differentially alters cellular redox properties. J Biomed Mater Res B Appl Biomater 72:223–229

    Article  PubMed  Google Scholar 

  11. Wataha JC, Lockwood PE, Lewis JB, Rueggeberg FA, Messer RL (2004) Biological effects of blue light from dental curing units. Dent Mater 20:150–157

    Article  PubMed  Google Scholar 

  12. Turrioni AP, Basso FG, Montoro LA, Almeida Lde F, Costa CA, Hebling J (2014) Phototherapy up-regulates dentin matrix proteins expression and synthesis by stem cells from human-exfoliated deciduous teeth. J Dent 42:1292–1299. doi:10.1016/j.jdent.2014.07.014

    Article  PubMed  CAS  Google Scholar 

  13. Krämer N, Lohbauer U, García-Godoy F, Frankenberger R (2008) Light curing of resin-based composites in the LED era. Am J Dent 21:135–142

    PubMed  Google Scholar 

  14. Oliveira CF, Basso FG, Lins EC, Kurachi C, Hebling J, Bagnato VS, de Souza Costa CA (2011) In vitro effect of low-level laser on odontoblast-like cells. Laser Phys Lett 8:155–163

    Article  CAS  Google Scholar 

  15. Kushibiki T, Tajiri T, Ninomiya Y, Awazu K (2010) Chondrogenic mRNA expression in prechondrogenic cells after blue laser irradiation. J Photochem Photobiol B 98:211–215

    Article  PubMed  CAS  Google Scholar 

  16. Jenkins PA, Carroll JD (2011) How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed Laser Surg 29:785–787. doi:10.1089/pho.2011.9895

    Article  PubMed  Google Scholar 

  17. Buravlev EA, Zhidkova TV, Osipov AN, Vladimirov YA (2015) Are the mitochondrial respiratory complexes blocked by NO the targets for the laser and LED therapy? Lasers Med Sci 30:173–180. doi:10.1007/s10103-014-1639-8

    Article  PubMed  Google Scholar 

  18. Emelyanov AN, Kiryanova VV (2015) Photomodulation of proliferation and differentiation of stem cells by the visible and infrared light. Photomed Laser Surg 33:164–174

    Article  PubMed  Google Scholar 

  19. Montoro LA, Turrioni AP, Basso FG, de Souza Costa CA, Hebling J (2013) Infrared LED irradiation photobiomodulation of oxidative stress in human dental pulp cells. Int Endod J 47:747–755. doi:10.1111/iej.12211

    Article  PubMed  Google Scholar 

  20. de Souza PP, Hebling J, Scalon MG, Aranha AM, Costa CA (2009) Effects of intrapulpal temperature change induced by visible light units on the metabolism of odontoblast-like cells. Am J Dent 22:151–156

    PubMed  Google Scholar 

  21. Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22:1304–1309

    Article  PubMed  CAS  Google Scholar 

  22. Wiegand C, Hipler UC (2008) Methods for the measurement of cell and tissue compatibility including tissue regeneration processes. GMS Krankenhhyg Interdiszip 3:Doc12

    PubMed  PubMed Central  Google Scholar 

  23. Basso FG, Turrioni AP, Hebling J, de Souza Costa CA (2013) Effects of zoledronic acid on odontoblast-like cells. Arch Oral Biol 58:467–473. doi:10.1016/j.archoralbio.2012.09.016

    Article  PubMed  CAS  Google Scholar 

  24. Simon S, Smith AJ, Lumley PJ, Berdal A, Smith G, Finney S, Cooper PR (2009) Molecular characterization of young and mature odontoblasts. Bone 45:693–703. doi:10.1016/j.bone.2009.06.018

    Article  PubMed  CAS  Google Scholar 

  25. Ladalardo TC, Pinheiro A et al (2004) Laser therapy in the treatment of dentine hypersensitivity. Braz Dent J 15:144–150

    Article  PubMed  Google Scholar 

  26. Amid R, Kadkhodazadeh M, Ahsaie MG, Hakakzadeh A (2014) Effect of low level laser therapy on proliferation and differentiation of the cells contributing in bone regeneration. J Lasers Med Sci 5:163–170

    PubMed  PubMed Central  Google Scholar 

  27. Rotenberg S, Lewis JB et al (2006) Extracellular environment as one mediator of blue light-induced mitochondrial suppression. Dent Mater 22:759–764

    Article  PubMed  CAS  Google Scholar 

  28. Karu TI (1988) Molecular mechanism of the therapeutic effect of low-intensity laser radiation. Lasers in the Life Sciences 2:53–74

    Google Scholar 

  29. Castano AP, Dai T, Yaroslavsky I, Cohen R, Apruzzese WA, Smotrich MH, Hamblin MR (2007) Low-level laser therapy for zymosan-induced arthritis in rats: importance of illumination time. Lasers Surg Med 39:543–550

    Article  PubMed  PubMed Central  Google Scholar 

  30. Basso FG, Pansani TN, Turrioni AP, Bagnato VS, Hebling J, de Souza Costa CA (2012) In vitro wound healing improvement by low-level laser therapy application in cultured gingival fibroblasts. Int J Dent 2012:719452

    Article  PubMed  PubMed Central  Google Scholar 

  31. Basso FG, Oliveira CF, Kurachi C, Hebling J, Costa CA (2013) Biostimulatory effect of low-level laser therapy on keratinocytes in vitro. Lasers Med Sci 28:367–374

    Article  PubMed  Google Scholar 

  32. Godley BF, Shamsi FA, Liang FQ, Jarrett SG, Davies S, Boulton M (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280:21061–22116

    Article  PubMed  CAS  Google Scholar 

  33. Lockwood DB, Wataha JC, Lewis JB, Tseng WY, Messer RLW, Hsu SD (2005) Blue light generated reactive oxygen species (ROS) differentially in tumor vs. normal epithelial cells. Dental Mater 21:683–688

    Article  CAS  Google Scholar 

  34. Roehlecke C, Schaller A, Knels L, Funk RH (2009) The influence of sublethal blue light exposure on human RPE cells. Mol Vis 15:1929–1938

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Arana-Chavez VE, Massa LF (2004) Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol 36:1367–1373

    Article  PubMed  CAS  Google Scholar 

  36. Taoufik K, Mavrogonatou E, Eliades T, Papagiannoulis L, Eliades G, Kletsas D (2008) Effect of blue light on the proliferation of human gingival fibroblasts. Dent Mater 24:895–900. doi:10.1016/j.dental.2007.10.006

    Article  PubMed  CAS  Google Scholar 

  37. Gritsch K, Ponsonne L, Schembri C, Farge P, Pourreyron L, Grosgogeat B (2008) Biological behaviour of buccal cells exposed to blue light. Materials Science and Engineering C 28:805–810

    Article  CAS  Google Scholar 

  38. Kienle A, Michels R, Hibst R (2006) Magnification—a new look at a long-known optical property of dentin. J Dent Res 85:955–959

    Article  PubMed  CAS  Google Scholar 

  39. Turrioni AP, Alonso JR, Basso FG, Moriyama LT, Hebling J, Bagnato VS, De Souza CC (2013) LED light attenuation through human dentin: a first step toward pulp photobiomodulation after cavity preparation. Am J Dent 26:319–323

    PubMed  Google Scholar 

  40. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M (2005) Low-level laser therapy for wound healing: mechanism and efficacy. Dermatol Surg 31:334–340

    Article  PubMed  CAS  Google Scholar 

  41. Hamblin MR, Demidova TN (2006) Mechanisms of low level light therapy. Proc of SPIE 6140:614001–614012. doi:10.1117/12.646294

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with thanks the financial support provided by the Brazilian financing agency FAPESP (São Paulo State Research Supporting Foundation-grant 2012/17552-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josimeri Hebling.

Ethics declarations

Conflict of interest

We declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, L.F.D., Basso, F.G., Turrioni, A.P.S. et al. Metabolic activity of odontoblast-like cells irradiated with blue LED (455 nm). Lasers Med Sci 31, 119–125 (2016). https://doi.org/10.1007/s10103-015-1837-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1837-z

Keywords

Navigation