Skip to main content

Advertisement

Log in

Low-level laser irradiation modulates cell viability and creatine kinase activity in C2C12 muscle cells during the differentiation process

  • Brief Report
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Low-level laser irradiation (LLLI) is increasingly used to treat musculoskeletal disorders, with satisfactory results described in the literature. Skeletal muscle satellite cells play a key role in muscle regeneration. The aim of the present study was to evaluate the effect of LLLI on cell viability, creatine kinase (CK) activity, and the expression of myogenic regulatory factors in C2C12 myoblasts during the differentiation process. C2C12 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 2 % horse serum and submitted to irradiation with GaAlAs diode laser (wavelength, 780 nm; output power, 10 mW; energy density, 5 J/cm2). Cell viability and the expression of myogenic regulatory factors were assessed 24, 48, and 72 h after irradiation by 3-(4,5-dimethylthiazol-2-yl)-2,5,-diphenyltetrazolium bromide (MTT) assay and quantitative real-time polymerase chain reaction (RT-qPCR), respectively. CK activity was analyzed at 24 and 72 h. An increase in cell viability was found in the laser group in comparison to the control group at all evaluation times. CK activity was significantly increased in the laser group at 72 h. Myogenin messenger RNA (mRNA) demonstrated a tendency toward an increase in the laser group, but the difference in comparison to the control group was non-significant. In conclusion, LLLI was able to modulate cell viability and CK activity in C2C12 myoblasts during the differentiation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Shi X, Garry DJ (2006) Muscle stem cells in development, regeneration, and disease. Genes Dev 20:1692–1708

    Article  CAS  PubMed  Google Scholar 

  2. Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139:2845–2856. doi:10.1242/dev.069088

    Article  CAS  PubMed  Google Scholar 

  3. Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA (2013) Cellular dynamics in the muscle satellite cell niche. EMBO Rep 14:1062–1072. doi:10.1038/embor.2013.182

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Duguez S, Sabido O, Freyssenet D (2004) Mitochondrial-dependent regulation of myoblast proliferation. Exp Cell Res 299:27–35

    Article  CAS  PubMed  Google Scholar 

  5. Rochard P, Rodier A, Casas F et al (2000) Mitochondrial activity is involved in the regulation of myoblast differentiation through myogenin expression and activity of myogenic factors. J Biol Chem 275:2733–2744

    Article  CAS  PubMed  Google Scholar 

  6. Seyer P, Grandemange S, Busson M et al (2006) Mitochondrial activity regulates myoblast differentiation by control of c-Myc expression. J Cell Physiol 207:75–86

    Article  CAS  PubMed  Google Scholar 

  7. Remels AH, Langen RC, Schrauwen P et al (2010) Regulation of mitochondrial biogenesis during myogenesis. Mol Cell Endocrinol 315(1–2):113–120. doi:10.1016/j.mce.2009.09.029

    Article  CAS  PubMed  Google Scholar 

  8. Seyer P, Grandemange S, Rochard P et al (2011) P43-dependent mitochondrial activity regulates myoblast differentiation and slow myosin isoform expression by control of calcineurin expression. Exp Cell Res 317:2059–2071. doi:10.1016/j.yexcr.2011.05.020

    Article  CAS  PubMed  Google Scholar 

  9. Hamai N, Nakamura M, Asano A (1997) Inhibition of mitochondrial protein synthesis impaired C2C12 myoblast differentiation. Cell Struct Funct 22(4):421–431

    Article  CAS  PubMed  Google Scholar 

  10. Leal-Junior EC, Vanin AA, Miranda EF et al (2013) Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci

  11. Mesquita-Ferrari RA, Martins MD, Silva JA Jr et al (2011) Effects of low-level laser therapy on expression of TNF-α and TGF-β in skeletal muscle during the repair process. Lasers Med Sci 26:335–340. doi:10.1007/s10103-010-0850-5

    Article  PubMed  Google Scholar 

  12. Fernandes KP, Alves AN, Nunes FD et al (2013) Effect of photobiomodulation on expression of IL-1β in skeletal muscle following acute injury. Lasers Med Sci 28:1043–1046. doi:10.1007/s10103-012-1233-x

    Article  PubMed  Google Scholar 

  13. Alves AN, Fernandes KP, Melo CA et al (2014) Modulating effect of low level-laser therapy on fibrosis in the repair process of the tibialis anterior muscle in rats. Lasers Med Sci 29:813–821. doi:10.1007/s10103-013-1428-9

    Article  CAS  PubMed  Google Scholar 

  14. Peplow PV, Chung TY, Baxter GD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28:S3–S40. doi:10.1089/pho.2010.2771

    Article  PubMed  Google Scholar 

  15. Ferreira MP, Ferrari RA, Gravalos ED et al (2009) Effect of low-energy gallium-aluminum-arsenide and aluminium gallium indium phosphide laser irradiation on the viability of C2C12 myoblasts in a muscle injury model. Photomed Laser Surg 27:901–906. doi:10.1089/pho.2008.2427

    Article  PubMed  Google Scholar 

  16. Mesquita-Ferrari RA, Ribeiro R, Souza NH et al (2011) No effect of low-level lasers on in vitro myoblast culture. Indian J Exp Biol 49:423–428

    PubMed  Google Scholar 

  17. Sehgal P, Chaturvedi P, Kumaran RI et al (2013) Lamin A/C haploinsufficiency modulates the differentiation potential of mouse embryonic stem cells. PLoS One 8:e57891. doi:10.1371/journal.pone.0057891

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Piovesan RF, Fernandes KP, Alves AN et al (2013) Effect of nandrolone decanoate on skeletal muscle repair. Int J Sports Med 34:87–2. doi:10.1055/s-0032-1311652

    CAS  PubMed  Google Scholar 

  19. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  20. Blau HM, Pavlath GK, Hardeman EC et al (1985) Plasticity of the differentiated state. Science 230:758–766

    Article  CAS  PubMed  Google Scholar 

  21. Wagatsuma A, Sakuma K (2013) Mitochondria as a potential regulator of myogenesis. ScientificWorldJournal 2013:593267. doi:10.1155/2013/593267

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chamberlain JS, Jaynes JB, Hauschka SD (1985) Regulation of creatine kinase induction in differentiating mouse myoblasts. Mol Cell Biol 5:484–492. doi:10.1128/mcb.5.3.484

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Monici M, Cialdai F, Ranaldi F et al (2013) Effect of IR laser on myoblasts: a proteomic study. Mol Biosyst 9:1147–1161. doi:10.1039/c2mb25398d

    Article  CAS  PubMed  Google Scholar 

  24. Zammit PS, Golding JP, Nagata Y et al (2004) Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J Cell Biol 166:347–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Montesano A, Luzi L, Senesi P et al (2013) Resveratrol promotes myogenesis and hypertrophy in murine myoblasts. J Transl Med 11:310. doi:10.1186/1479-5876-11-310

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank UNINOVE and the Brazilian fostering agencies, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (grant no. 473710/2011-0), and São Paulo Research Foundation - FAPESP (grant no. 2010/09191-5) for financial support. Fernandes KPS was supported by CNPq (grant no. 303662/2012-3). Alves AN was supported by FAPESP (grant no. 2013/21540-3).

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel Agnelli Mesquita-Ferrari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesquita-Ferrari, R.A., Alves, A.N., de Oliveira Cardoso, V. et al. Low-level laser irradiation modulates cell viability and creatine kinase activity in C2C12 muscle cells during the differentiation process. Lasers Med Sci 30, 2209–2213 (2015). https://doi.org/10.1007/s10103-015-1715-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-015-1715-8

Keywords

Navigation