In this prospective, two-center clinical trial conducted at Skinpulse Dermatology and Laser Centre, Geneva, Switzerland, and Dr. Morren’s private practice, Leuven, Belgium, treatment was performed using the VelaShape II system, a device that combines four different technologies including broadband IR (infrared), bipolar RF-pulsed vacuum and massage rollers. The broadband IR light spectrum is 700–2,000 nm with a high pass filter, at up to 35 W. The RF frequency is 1 MHz and up to 60 W. Pulsed vacuum was set up at 200 mbar of negative pressure.
The combination of the IR and pulsed vacuum coupled RF technologies causes a deep heating of the connective tissue including the fibrous septae. This in turn promotes an increase in collagen deposition and cellular metabolism resulting in a localized reduction in skin laxity and volume [1–4]. The additional mechanical tissue manipulation by the vacuum and massage rollers, causes an immediate increase in the local circulation and enhances lymphatic drainage, both effects of which are considered to be essential components for healthy skin structure. The VelaShape II system has two applicators, namely the Vsmooth with a 40 mm × 40 mm spot size and the Vcontour with a 30 mm × 30 mm spot size. The applicators are fitted with a replaceable cap that has a treatment chamber, into which the targeted skin is repeatedly drawn during treatment via mechanical manipulation and is exposed to IR and RF energies. The user can individualize treatment by adjusting the energies and vacuum levels according to the patient and anatomical site treated.
The study included 35 healthy adult female patients who were between 21 and 58 years of age (mean age 43) with clinically appreciable skin laxity and localized subcutaneous fat deposits on the abdomen/flanks, buttocks or thigh regions, and Fitzpatrick skin types I to III. Patient inclusion criteria were the presence of at least 20 mm of subcutaneous fat (assessed by ultrasound) and the presence of lax skin and cellulite. Study exclusion criteria were mainly pregnancy, lactation, and any kind of previous cosmetic treatment in these areas for the last 12 months. Every patient signed the informed consent prior to the study. Study participants were treated for circumferential reduction on the abdomen/flanks (n = 32), buttocks (n = 14), and thighs (n = 16) and received a total of six treatments performed once or twice a week. All of the treatments in this study were performed with the Vsmooth large spot applicator using RF energy of 60 W and IR energy of up to 35 W. Each procedure was performed using the established and standardized treatment protocol of the VelaShape II system, which at the time of this study was a new device with increased power. The pulsed vacuum was typically set at level 2 (200 mbar of negative pressure). Treatment sessions typically lasted from 35 to 45 min, in which the goal was to treat the area until the target tissue temperature of between 39–41 °C has been reached and maintain it for at least 5 min per 10 × 10 cm2 zone (per the VelaShape II user manual). The temperature maintained was measured at skin level using an external thermometer. It has been shown that in the temperature range 37–44 C, skin blood perfusion increases 10 times, muscle about nine times, and fat only two times [13]. The skin cools much faster than the fat because of the increased blood flow, thus the temperature is maintained much longer in the fat layer than what we measure on the skin.
Patients did not gain or lose weight significantly during the course of the study, as they were weighed at each visit. Various clinical evaluations were performed by an independent observer at baseline, after the fourth treatment, immediately after the last treatment, and 1 and 3 months after the last treatment. Objective clinical assessments included changes in the fat layer thickness and skin firmness/elasticity, which were performed using an external ultrasound probe (Echoblaster 128, Telemed Ltd., Vilnius, Lithuania) and a cutometer, respectively. Both the ultrasound and cutometer technologies used to ascertain the objective clinical changes achieved in this study are FDA-approved modalities. Measurements were taken in three consecutive repetitions, and the average score (in mm) was recorded. Improvement evaluation was performed by the physician using the following percentile categories: 0, 1–24, 25–49, 50–74, and 75–100 %. All clinical photographs were taken with a medical standardized system (Profect Full Body System, Profect Medical Technologies LLC, Pound Ridge, NY, USA). Patients evaluated treatment outcome satisfaction based on the following satisfaction scale: not satisfied, slightly satisfied, satisfied, very satisfied, and extremely satisfied. Safety and patients’ report of treatment-associated sensation was monitored throughout the study.