Skip to main content

Advertisement

Log in

Photodynamic inactivation of Candida albicans mediated by a low density of light energy

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Shorter times and lower energies of application of light sources are desirable to use photodynamic antimicrobial chemotherapy (PACT) to the clinical control of candidiasis, especially among babies and children. Light energies ranging from 39.5 to 100 J/cm2 were previously applied to kill Candida albicans by PACT. The present study evaluated the efficacy of a combination of 0.05 mg/mL toluidine blue O (TBO) and a short time of application (60 s) and a low density of light energy (18 J/cm2) of a red light-emitting diode (LED) in killing C. albicans planktonic cells. Standard suspensions of C. albicans were randomly assigned for four treatment groups: control (L−P−), LED alone (L+P−), TBO alone (L−P+), and PACT (L+P+). After treatments, serial dilutions of suspensions were prepared and streaked on Sabouraud dextrose agar to determine colony-forming units of C. albicans per milliliter (CFU/mL). The results were analyzed by ANOVA and Tukey’s post-hoc test (P < 0.05). PACT significantly reduced CFUs of C. albicans in comparison to other three treatments. Our results demonstrated a fungicidal effect of PACT mediated by a shorter time of application of LED on C. albicans planktonic cells. Further in vivo studies are needed to elucidate the efficacy of PACT to treat human fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Douglas LJ (2002) Medical importance of biofilms in Candida infections. Rev Iberoam Micol 19(3):139–143

    PubMed  Google Scholar 

  2. Donnelly RF, McCarron PA, Tunney MM (2008) Antifungal photodynamic therapy. Microbiol Res 163(1):1–12

    Article  CAS  PubMed  Google Scholar 

  3. Hannula J, Dogan B, Slots J, Okte E, Asikainen S (2001) Subgingival strains of Candida albicans in relation to geographical origin and occurrence of periodontal pathogenic bacteria. Oral Microbiol Immunol 16(2):113–118

    Article  CAS  PubMed  Google Scholar 

  4. Pinto PM, Weikert-Oliveira Rde C, Lyon JP, Cury VF, Arantes RR, Koga-Ito CY, Resende MA (2008) In vitro antifungal susceptibility of clinical isolates of Candida spp. obtained from patients with different predisposing factors to candidosis. Microbiol Res 163(5):579–585

    Article  CAS  PubMed  Google Scholar 

  5. Hamblin MR, Hasan T (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci 3(5):436–450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Soukos NS, Goodson JM (2011) Photodynamic therapy in the control of oral biofilms. Periodontol 55(1):143–166

    Article  Google Scholar 

  7. Tremblay JF, Dussault S, Viau G, Gad F, Boushira M, Bissonnette R (2002) Photodynamic therapy with toluidine blue in Jurkat cells: cytotoxicity, subcellular localization and apoptosis induction. Photochem Photobiol Sci 1(11):852–856

    Article  CAS  PubMed  Google Scholar 

  8. Nagayoshi M, Nishihara T, Nakashima K, Iwaki S, Chen KK, Terashita M, Kitamura C (2011) Bactericidal effects of diode laser irradiation on enterococcus faecalis using periapical lesion defect model. ISRN Dent 2011:870364

    PubMed Central  PubMed  Google Scholar 

  9. Sharman WM, Allen CM, van Lier JE (1999) Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today 4(11):507–517

    Article  CAS  PubMed  Google Scholar 

  10. Dovigo LN, Pavarina AC, Carmello JC, Machado AL, Brunetti IL, Bagnato VS (2011) Susceptibility of clinical isolates of Candida to photodynamic effects of curcumin. Lasers Surg Med 43(9):927–934

    Article  PubMed  Google Scholar 

  11. Carvalho GG, Felipe MP, Costa MS (2009) The photodynamic effect of methylene blue and toluidine blue on Candida albicans is dependent on medium conditions. J Microbiol 47(5):619–623

    Article  CAS  PubMed  Google Scholar 

  12. Pupo YM, Gomes GM, Santos EB, Chaves L, Michel MD, Kozlowski VA Jr, Gomes OM, Gomes JC (2011) Susceptibility of Candida albicans to photodynamic therapy using methylene blue and toluidine blue as photosensitizing dyes. Acta Odontol Latinoam 24(2):188–192

    PubMed  Google Scholar 

  13. Dai T, Bil de Arce VJ, Tegos GP, Hamblin MR (2011) Blue dye and red light, a dynamic combination for prophylaxis and treatment of cutaneous Candida albicans infections in mice. Antimicrob Agents Chemother 55(12):5710–5717

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Soares BM, da Silva DL, Sousa GR, Amorim JC, de Resende MA, Pinotti M, Cisalpino PS (2009) In vitro photodynamic inactivation of Candida spp. growth and adhesion to buccal epithelial cells. J Photochem Photobiol B 94(1):65–70

    Article  CAS  PubMed  Google Scholar 

  15. Souza RC, Junqueira JC, Rossoni RD, Pereira CA, Munin E, Jorge AO (2010) Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers Med Sci 25(3):385–389

    Article  PubMed  Google Scholar 

  16. Donnelly RF, McCarron PA, Tunney MM, David Woolfson A (2007) Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. J Photochem Photobiol B 86(1):59–69

    Article  CAS  PubMed  Google Scholar 

  17. Wilson M, Mia N (1993) Sensitisation of Candida albicans to killing by low-power laser light. J Oral Pathol Med 22(8):354–357

    Article  CAS  PubMed  Google Scholar 

  18. Wainwright M, Stanforth A, Jones R, Loughran C, Meegan K (2010) Photoantimicrobials as a potential local approach to geriatric UTIs. Lett Appl Microbiol 50(5):486–492

    Article  CAS  PubMed  Google Scholar 

  19. Giusti JS, Santos-Pinto L, Pizzolito AC, Helmerson K, Carvalho-Filho E, Kurachi C, Bagnato VS (2008) Antimicrobial photodynamic action on dentin using a light-emitting diode light source. Photomed Laser Surg 26(4):281–287

    Article  PubMed  Google Scholar 

  20. Tanaka M, Kinoshita M, Yoshihara Y, Shinomiya N, Seki S, Nemoto K, Hirayama T, Dai T, Huang L, Hamblin MR, Morimoto Y (2012) Optimal photosensitizers for photodynamic therapy of infections should kill bacteria but spare neutrophils. Photochem Photobiol 88(1):227–232

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Fichtenbaum CJ, Powderly WG (1998) Refractory mucosal candidiasis in patients with human immunodeficiency virus infection. Clin Infect Dis 26(3):556–565

    Article  CAS  PubMed  Google Scholar 

  22. Barchiesi F, Di Francesco LF, Compagnucci P, Arzeni D, Cirioni O, Scalise G (1997) Genotypic identification of sequential Candida albicans isolates from AIDS patients by polymerase chain reaction techniques. Eur J Clin Microbiol Infect Dis 16(8):601–605

    Article  CAS  PubMed  Google Scholar 

  23. Kontoyiannis DP, Lewis RE (2002) Antifungal drug resistance of pathogenic fungi. Lancet 359(9312):1135–1144

    Article  CAS  PubMed  Google Scholar 

  24. Wainwright M (1996) Non-porphyrin photosensitizers in biomedicine. Chem Soc Rev 25(5):351

    Article  CAS  Google Scholar 

  25. Schlafer S, Vaeth M, Horsted-Bindslev P, Frandsen EVG (2010) Endodontic photoactivated disinfection using a conventional light source: an in vitro and ex vivo study. Oral Surg Oral Med O 109(4):634–641

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Salles Barbério.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbério, G.S., da Costa, S.V., dos Santos Silva, M. et al. Photodynamic inactivation of Candida albicans mediated by a low density of light energy. Lasers Med Sci 29, 907–910 (2014). https://doi.org/10.1007/s10103-013-1295-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1295-4

Keywords

Navigation