Skip to main content

Advertisement

Log in

Quartzite tailings in civil construction materials: a systematic review

  • Review
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

The inadequate management of waste from the mining industry can lead to several environmental problems. For instance, the extraction of quartzite, an ornamental stone, generates quartzite waste (or residues or tailings) (QTZ), which is commonly deposited in the environment, causing landscape degradation, contamination by dust, and silting of rivers. To mitigate this scenario and stimulate the circular economy, this literature review focuses on the use of quartzite tailings in construction materials. A systematic search was carried out in the Scopus, Web of Science, and Google Scholar databases, including articles in English and Portuguese published between 2007 and 2022. The results showed that the use of QTZ as aggregate in cement-based composites is viable, as this waste has physical, chemical, mineralogical, and microstructural characteristics similar to conventional natural aggregate. Quartzite waste has been successfully adopted in precast concrete, cladding, and laying mortars, soil–cement bricks, and interlocking pavements. Many works brought the physical and mechanical characterization of the proposed construction materials, with gaps being observed mainly in terms of durability and performance. In conclusion, the use of QTZ in construction materials is a promising alternative, especially in cement-based composites. An important advantage is that this material requires little or no prior processing. However, the reuse of quartzite tailings is still limited, showing that more academic studies, private initiatives, and public policies are required.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: authors (2022)

Fig. 2

Source: authors, adapted from Ferenhof and Fernandes (2016)

Fig. 3
Fig. 4
Fig. 5

Source: authors (2022)

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Notes

  1. 1 BRL = 0,1908 USD on December 6, 2022.

References

  • ABIROCHAS (2021) Balanço das Exportações e Importações Brasileiras de Rochas Ornamentais em 2020, Belo Horizonte, MG: Filho, Cid Chiodi

  • ABNT (1992) NBR 12696 - Agregados- Verificação do comportamento mediante ciclagem artificial água-estufa, Rio de Janeiro: Associação Brasileira de Normas Técnicas

  • ABNT (2004a) NBR 10004 - Resíduos Sólidos - Classificação, Rio de Janeiro: Associação Brasileira de Normas Técnicas

  • ABNT (2004b) NBR 10005 - Procedimento para obtenção de extrato lixiviado de resíduos sólidos, Rio de Janeiro: Associação Brasileira de Normas Técnicas

  • ABNT (2012) NBR 10833 - Fabricação de tijolo solo-cimento com utilização de prensa manual ou hidráulica - Procedimento , Rio de Janeiro: Associação Brasileira de Normas Técnicas

  • ABNT (2013) NBR 9938 - Agregados - Determinação da resistência ao esmagamento de agregados graúdos - Método de ensaio, Rio de Janeiro: Associação Brasileira de Normas Técnicas

  • ABNT (2014) Cimento Portland - Determinação da variação dimensional de barras de argamassa de cimento Portland expostas à solução de sulfato de sódio, Rio de Janeiro: Associação Brasileira de Normas Técnicas

  • ABNT (2018a) NBR 15577-1 Agregados - Reatividade álcali-agregado. Parte 1: Guia para avaliação da reatividade potencial e medidas preventivas para uso de agregados em concreto, Rio de Janeiro: Associação Brasileira de Normas Técnicas

  • ABNT (2018b) NBR 15577–4 Agregados - Reatividade álcali-agregado. Parte 4: Determinação da expansão em barras de argamassa pelo método acelerado, Rio de Janeiro: Associação Brasileira de Normas Técnicas

  • ABNT (2019a) NBR 7211 - Agregados para concreto - Especificação, Rio de Janeiro: Associação Brasileira de Normas Técnicas

  • ABNT (2019b) NBR 7809 - Agregado graúdo - Determinação do índice de forma pelo método do paquímetro - Método de ensaio, Rio de Janeiro: Associação Brasileira de normas técnicas

  • ABNT (2022) NBR 16974 - Agregado graúdo - Ensaio de abrasão Los Angeles , Rio de Janeiro: Associação Brasileira de Normas Técnicas

  • Adom-Asamoah M, Tuffour YA, Afrifa RO, Kankam CK (2014) Strength characteristics of hand-quarried partially-weathered quartzite aggregates in concrete. Am J Civ Eng 2(5):134–142

    Article  Google Scholar 

  • Agrizzi CP et al (2022) Comparison between synthetic and biodegradable polymer matrices on the development of quartzite waste-based artificial stone. Sustainability 14(11):6388. https://doi.org/10.3390/su14116388

    Article  CAS  Google Scholar 

  • Ako T et al (2014) Environmental effects of sand and gravel mining on land and soil in Luku, Minna, Niger State North Central Nigeria. J Geosci Geomatics 2(2):42–49. https://doi.org/10.12691/jgg-2-2-1

    Article  Google Scholar 

  • Alecrim AV (2009) Estudo do resíduo de quartzito foliado para emprego em estruturas de pavimentos. Escola Politécnica, Universidade de São Paulo, São Paulo

    Book  Google Scholar 

  • Alkhaly YR, Abdullah H, Hasan M (2022) Characteristics of reactive powder concrete comprising synthesized rice husk ash and quartzite powder. J Clean Prod 375:134154. https://doi.org/10.1016/j.jclepro.2022.134154

    Article  CAS  Google Scholar 

  • Almeida SLM, Luz AB (2012) Manual de agregados para construção civil, 2ª. CETEM, Rio de Janeiro

    Google Scholar 

  • ASTM (2002) C 452: Standard Test Method for Potential Expansion of Portland Cement Mortars Exposed to Sulfate. American Society for Testing and Materials, s.l.

    Google Scholar 

  • ASTM (2007) C1260 - Standard test method for potential alkali reactivity of aggregates (mortar-bar method), s.l.: s.n

  • Barreto RR et al. (2021) Desempenho térmico de argamassas produzidas com resíduos da mineração e siderurgia. 7° Encontro Nacional de Aproveitamento de Resíduos na Construção, pp 73–80

  • Barros GHA (2020) Utilização de rejeitos de quartzito do município de Guapé-MG como agregado na produção de telhas de concreto. Centro Universitário do Sul de Minas - UNIS-MG, Varginha

    Google Scholar 

  • Barros SVA et al (2016) Addition of quartzite residues on mortars: analysis of the alkali aggregate reaction and the mechanical behavior. Constr Build Mater 118:344–351. https://doi.org/10.1016/j.conbuildmat.2016.05.079

    Article  CAS  Google Scholar 

  • Barros SVA, Dantas GCB, Neves GA, Menezes RR (2020) Imobilização de metais pesados presentes nos resíduos de quartzito por meio da incorporação em argamassas com substituição total do agregado natural. Engenharia Sanitaria e Ambiental 25:833–845

    Article  Google Scholar 

  • Barros SVA (2017) Durabilidade de argamassas alternativas aditivadas com resíduos de quartzito. Tese de Doutorado - Universidade Federal de Campina Grande, Campina Grande PB

    Google Scholar 

  • Barros SVA et al (2019) Mechanical behavior and durability of mortars with quartzite and Portland cement after sulfate attack. Revista Matéria. https://doi.org/10.1590/S1517-707620190004.0855

    Article  Google Scholar 

  • Benachio GLF, Freitas MCD, Tavares SF (2020) Circular economy in the construction industry: a systematic literature review. J Clean Prod 260:121046. https://doi.org/10.1016/j.jclepro.2020.121046

    Article  Google Scholar 

  • Carvalho JMFD et al (2019b) More eco-efficient concrete: an approach on optimization in the production and use of waste-based supplementary cementing materials. Constr Build Mater 206:397–409. https://doi.org/10.1016/j.conbuildmat.2019.02.054

    Article  Google Scholar 

  • Carvalho JMFD et al (2020b) Enhancing the eco-efficiency of concrete using engineered recycled mineral admixtures and recycled aggregates. J Clean Prod 257:120530. https://doi.org/10.1016/j.jclepro.2020.120530

    Article  Google Scholar 

  • Carvalho JMFD, Campos PAM, Defáveri K, Brigolini GJ (2019a) Low environmental impact cement produced entirely from industrial and mining waste. J Mater Civ Eng 31(2):04018391

    Article  Google Scholar 

  • Carvalho JMF et al (2020a) Influence of particle size-designed recycled mineral admixtures on the properties of cement-based composites. Constr Build Mater 272:121640. https://doi.org/10.1016/j.conbuildmat.2020.121640

    Article  CAS  Google Scholar 

  • Carvalho E et al (2021) Incorporation of porcelain powder and mineral wastes in epoxy matrix for artificial stone purchase. Char Min Metals Mater. https://doi.org/10.1007/978-3-030-65493-1_43

    Article  Google Scholar 

  • Chihaoui R et al (2022) Efficiency of natural pozzolan and natural perlite in controlling the alkali-silica reaction of cementitious materials. Case Stud Constr Mater 17:e01246. https://doi.org/10.1016/j.cscm.2022.e01246

    Article  Google Scholar 

  • Collares EG, Francklin Junior I, Motta LAC (2012) Avaliação do agregado produzido a partir de resíduos de locais de mineração de quartzito para uso em concreto. Revista Internacional De Engenharia Geotécnica e Geoambiental 35(3):251–266. https://doi.org/10.28927/SR.353251

    Article  Google Scholar 

  • Dantas CM Jr, Barros SVA, Neves GA (2019) Utilização de Resíduos de Quartzito para Aplicação em Pavimentos Intertravados. Revista Eletrônica De Materiais e Processos 3:196–200

    Google Scholar 

  • Dias LS (2017) Rejeito de mineração de quartzito como agregado para a produção de argamssa colante. Universidade Federal de Ouro Preto, Ouro Preto

    Google Scholar 

  • Duarte GM, Santos NCS (2019) Aproveitamento de resíduos da produção de pedras decorativas em argamassas de revestimento. Unievángelica, Anápolis, GO

    Google Scholar 

  • Dzevad F, Rejhana D (2021) Paleozoic quartzite of the Smrcevice in the central Bosnia. Arch Fot Tech Sci 25:1–8. https://doi.org/10.7251/afts.2021.1325.001F

    Article  Google Scholar 

  • Faleiro FF, Lopes LM (2010) Aspects of impacts of mining and exploration quartzite in Pirenópolis-GO. Ateliê Geográfico 4(11):148–162

    Article  Google Scholar 

  • FEAM (2009) Plano de Ação para Sustentabilidade do Setor de Rochas Ornamentais – Quartzito São Thomé das Letras, Belo Horizonte: State Foundation for the Environment

  • FEAM (2015) Guia técnico ambiental da indústria de rochas ornamentais/Fundação Estadual do Meio Ambiente, Belo Horizonte: Federação das Indústrias do Estado de Minas Gerais

  • Ferenhof HA, Fernandes RF (2016) Desmistificando uma revisão de literatura como base para redação científica: Método SSF. Revista ACB 21:550–563

    Google Scholar 

  • Ferreira FBS (2017) Avaliação da utilização de resíduos de quartzito como agregado em microconcretos. Universidade Federal de São João Del-Rei, São João Del-Rei

    Google Scholar 

  • Francklin I Jr (2009) Estudo tecnológico em rejeitos de quartzito do Sudoeste de Minas Gerais para utilização como agregado graúdo no concreto. Dissertação de Mestrado - Universidade Federal de Uberlândia, Uberlândia

    Google Scholar 

  • Francklin I Jr et al (2019) Study of reactive powder concrete using quartzite tailings from the state of Minas Gerais - Brazil. Proc Manuf 38:1758–1765. https://doi.org/10.1016/j.promfg.2020.01.091

    Article  Google Scholar 

  • Francklin I Jr, Ribeiro RP, Corrêa FA (2021) Quartzite mining waste: diagnosis of ASR alkali-silica reaction in mortars and portland cement concrete. Materials 14:7642. https://doi.org/10.3390/ma14247642

    Article  CAS  Google Scholar 

  • G1 Sul de Minas, 2013. Mineradores buscam selo de procedência para a pedra 'São Tomé'. [Online] https://g1.globo.com/mg/sul-de-minas/noticia/2013/11/mineradores-buscam-selo-de-procedencia-para-pedra-sao-tome.html

  • Gavriletea MD (2017) Environmental impacts of sand exploitation. Anal Sand Market Sustain 9:1118. https://doi.org/10.3390/su9071118

    Article  Google Scholar 

  • Gehlot T, Sankhla SS, Parihar S (2021) Compressive, flexural strength test and chloride ion permeability test of concrete incorporating quartzite rock dust. Mater Today Proc 45:4724–4730. https://doi.org/10.1016/j.matpr.2021.01.166

    Article  CAS  Google Scholar 

  • Heni Fitriani SA (2022) Investigation of requisite measures for enhancing sustainable construction practices in Indonesia. Eng Constr Archit Manag. https://doi.org/10.1108/ECAM-11-2021-1051

    Article  Google Scholar 

  • ICMBio 2019. Operação combate mineração ilegal na Serra da Canastra. [Online] Available at: https://www.icmbio.gov.br/portal/ultimas-noticias/20-geral/10222-operacao-combate-exploracao-ilegal-de-quartzitos-na-serra-da-canastra

  • IPECE (2018) Dinâmica das Exportações do Setor de Pedras Ornamentais: Uma análise para o Brasil e o Ceará no período de 2006 a 2017, Fortaleza, Ceará, Brasil: Instituto de Pesquisa e Estratégia Econômica do Ceará

  • Kalisz S et al (2022) Waste management in the mining industry of metals ores, coal, oil and natural gas - a review. J Environ Manage 304:114239. https://doi.org/10.1016/j.jenvman.2021.114239

    Article  CAS  Google Scholar 

  • Kerbey HC (2011) Itacolumite, flexible sandstone and flexible quartzite – a review. Proc Geol Assoc 122:16–24. https://doi.org/10.1016/j.pgeola.2010.09.006

    Article  Google Scholar 

  • Khan S, Sugie A (2015) Sand mining and its social impacts on local society in rural Bangladesh: a case study of a village in Tangail district. J Urban Region Stud Contemp India. https://doi.org/10.15027/41500

    Article  Google Scholar 

  • Li H et al (2021) Effect of different lithological stone powders on properties of cementitious materials. J Clean Prod 289:125820. https://doi.org/10.1016/j.jclepro.2021.125820

    Article  Google Scholar 

  • Lima GLS (2020) Efeito filler em argamassas de revestimento com resíduos de quartzito. Universidade Federal Rural do Semi-Árido, Angicos-RN

    Google Scholar 

  • Lou Y et al (2023) Performance characteristics of cementitious composites modified with silica fume: a systematic review. Case Studies in Construction Materials 18:e01753. https://doi.org/10.1016/j.cscm.2022.e01753

    Article  Google Scholar 

  • Mahpour A (2018) Prioritizing barriers to adopt circular economy in construction and demolition waste management. Resour Conserv Recycl 134:216–227. https://doi.org/10.1016/j.resconrec.2018.01.026

    Article  Google Scholar 

  • Martins ACP et al (2021) Steel slags in cement-based composites: An ultimate review on characterization, applications and performance. Constr Build Mater 291:123265. https://doi.org/10.1016/j.conbuildmat.2021.123265

    Article  CAS  Google Scholar 

  • Mendes JC et al (2020) Coating mortars based on mining and industrial residues. J Mater Cycles Waste Manage 22:1569–1586. https://doi.org/10.1007/s10163-020-01051-0

    Article  CAS  Google Scholar 

  • Mendes JC et al (2019a) Factors affecting the specific heat of conventional and residue-based mortars. Constr Build Mater 237:117597. https://doi.org/10.1016/j.conbuildmat.2019.117597

    Article  CAS  Google Scholar 

  • Mendes JC et al (2019b) On the relationship between morphology and thermal conductivity of cement-based composites. Cement Concr Compos 104:103365. https://doi.org/10.1016/j.cemconcomp.2019.103365

    Article  CAS  Google Scholar 

  • Mendonça AMGD et al (2022) Estudo de viabilidade da incorporação de resíduos cerâmicos micronizados em concreto estrutural. Revista Cubana De Ingeniería 13:e333

    Google Scholar 

  • Miranda LFR (2005) Constribuição ao desenvolvimento da produção e controle de argamassas de revestimento com areia reciclada lavada de resíduos classe A da construção civil. Tese de doutorado - Escola Politécnica da Universidade de São Paulo, São Paulo

    Google Scholar 

  • Mohajerani A et al (2017) Practical recycling applications of crushed waste glass in construction materials: a review. Constr Build Mater 156:443–467. https://doi.org/10.1016/j.conbuildmat.2017.09.005

    Article  CAS  Google Scholar 

  • Moreira PI et al (2022) Ornamental stone processing waste incorporated in the production of mortars: technological influence and environmental performance analysis. Sustainability 14(10):5904. https://doi.org/10.3390/su14105904

    Article  CAS  Google Scholar 

  • Munaro MR, Tavares SF, Bragança L (2020) Towards circular and more sustainable buildings: a systematic literature review on the circular economy in the built environment. J Clean Prod 260:121134. https://doi.org/10.1016/j.jclepro.2020.121134

    Article  Google Scholar 

  • Nascimento IE (2018) Estudo de utilização de resíduo de quartzito como agregado miúdo em concreto convencional. Universidade Federal Rural do Semiárido, Angicos

    Google Scholar 

  • Natalli JF, Thomaz ECS, Mendes JC, Peixoto RAF (2021) A review on the evolution of Portland cement and chemical admixtures in Brazil. Revista IBRACON De Estruturas e Materiais 14:e14603

    Article  Google Scholar 

  • Oey T et al (2020) Calcium nitrate: A chemical admixture to inhibit aggregate dissolution and mitigate expansion caused by alkali-silica reaction. Cement Concr Compos 110:103592. https://doi.org/10.1016/j.cemconcomp.2020.103592

    Article  CAS  Google Scholar 

  • Oliveira TRRMS (2017) Caracterização de lamas do corte de granitos com vista ao uso em obras geotécnicas. Ciência & Engenharia 25:51–57

    Article  Google Scholar 

  • Oliveira MDPSL, Oliveira EAD, Fonseca AM (2021) Strategies to promote circular economy in the management of construction and demolition waste at the regional level: a case study in Manaus, Brazil. Clean Technol Environ Policy 23:2713–2725. https://doi.org/10.1007/s10098-021-02197-7

    Article  Google Scholar 

  • Pereira TGT et al (2020) Coconut fibers and quartzite wastes for fiber-cement production by extrusion. Mater Today Proc 31:S309–S314. https://doi.org/10.1016/j.matpr.2020.01.394

    Article  CAS  Google Scholar 

  • Ramirio RF, Pamplona DRP, Francklin Junior I, Collares EG (2008) Estudo comparativo de rejeitos de quartzito com outros agregados comercialmente utilizados como materiais de construção no Sudoeste de Minas Gerais. Ciência Et Praxis 1(1):25–32

    Google Scholar 

  • Reis FMD (2019) Estudo do comportamento físico-mecânico de tijolos de solo-cimento com adição de rejeitos de mineração de quartzito. Universidade de São Paulo, São Carlos

    Google Scholar 

  • Reis MJ, Collares EG, Reis FMD (2017) Technological assessment of tailings from quartzite mining sites in Alpinópolis (Minas Gerais–Brazil) as aggregates in concrete block paving (CBP). Bull Eng Geol Env 77:1623–1637. https://doi.org/10.1007/s10064-017-1015-6

    Article  CAS  Google Scholar 

  • Reis FMD, Ribeiro RP, Reis MJ (2020) Physical-mechanical properties of soil-cement bricks with the addition of the fine fraction from the quartzite mining tailings (State of Minas Gerais – Brazil). Bull Eng Geol Env. https://doi.org/10.1007/s10064-020-01765-3

    Article  Google Scholar 

  • Russo MLC (2011) Reciclagem de Resíduo Gerado na Extração. Tese de Doutorado - Universidade Federal de Minas Gerais, Belo Horizonte

    Google Scholar 

  • Santos DA, Gurgel AF, Mota AF, Paiva FIG (2014) Extração mineral de quartzito e sua aplicabilidade na construção civil na cidade de Várzea-PB. Holos 4(30):89–100

    Article  Google Scholar 

  • Santos D (2015) Substituição total do agregado natural por quartzito friável para produção de argamassas mistas de assentamento e revestimento, Ouro Preto: Federal University of Ouro Preto (Master's Thesis).

  • Seay J, Ternes ME (2022) A review of current challenges and legal advances in the global management of plastic waste. Clean Technol Environ Policy 24:731–738. https://doi.org/10.1007/s10098-022-02289-y

    Article  Google Scholar 

  • Silva LM, Barros SVA (2018) Estudo comparativo entre agregados artificiais oriundos de resíduos sólidos. Universidade Federal Rural do Semiárido - UFERSA, S.L.

    Google Scholar 

  • Silva EFD et al (2020) Environmental impacts of sand mining in the city of Santarém, Amazon region, Northern Brazil. Environ Dev Sustain. https://doi.org/10.1007/s10668-018-0183-2

    Article  Google Scholar 

  • Silva KR, Campos LFA, Santana LNL (2018). Resíduo De Quartzito – Matéria Prima Alternativa Para Ser Incorporada em Massas Utilizadas na Produção de Grés Porcelanato. [Online] Available at: www.ufcg.edu.br [Accessed 20 06 2021].

  • Silva C (2017) PF faz operação contra extração clandestina de quartzito em Minas. [Online] https://www.em.com.br/app/noticia/gerais/2017/08/17/interna_gerais,892700/pf-faz-operacao-contra-extracao-clandestina-de-quartzito-em-minas.shtml

  • Tapas MJ et al (2023) Comparative study of the efficacy of fly ash and reactive aggregate powders in mitigating alkali-silica reaction. J Build Eng 63:105571. https://doi.org/10.1016/j.jobe.2022.105571

    Article  Google Scholar 

  • Togal LP, Jalali S (2010) Sustentabilidade dos materiais de construção. Universidade do Minho, S.L.

    Google Scholar 

  • UNEP, 2016. Worldwide extraction of materials triples in four decades, intensifying climate change and air. [Online]https://www.unenvironment.org/news-and-stories/press-release/worldwide-extraction-materials-triples-four-decades-intensifying [Accessed 17 01 2022]

  • United States Environmental Protection Agency (UESPA) (1992) TCPL 1311: test methods for evaluating solid waste, toxicity characteristics leaching procedure, Estados Unidos: s.n

  • Valadão GES et al (2010) Quartzito no parque nacional da serra da Canastra e seu entorno - Relatório Final. Universidade Federal de Minas Gerais, Belo Horizonte

    Google Scholar 

  • Vidal FWH, Campos AR, Marinho JB (2011) Aproveitamento de rejeitos de quartzito de Várzea do Seridó-PB, na fabricação de argamassa. XXIV ENTMME, Salvador/Bahia, pp 872–880

    Google Scholar 

  • Villa M (2020) Homem é preso realizando extração ilegal de quartzito em Campo Largo [Online]https://paranaportal.uol.com.br/cidades/homem-preso-extracao-quartzito/ Available at: [Accessed 15 01 2022].

  • Wu H et al (2019) Status quo and future directions of construction and demolition waste research: a critical review. J Clean Prod 240:118163. https://doi.org/10.1016/j.jclepro.2019.118163

    Article  Google Scholar 

  • Zhao J, Ni K, Su Y, Shi Y (2021) An evaluation of iron ore tailings characteristics and iron ore tailings concrete properties. Constr Build Mater 286:122968. https://doi.org/10.1016/j.conbuildmat.2021.122968

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the agencies CNPq (National Council for Scientific and Technological Development, grant 403545/2020-0—MAI/DAI 12/2020—scholarship for Letícia Martins), and PROPPI/UFOP (Dean of Research and Innovation  at the Federal University of Ouro Preto, for Research Assistance Grant 13/2020 to Júlia Mendes). We are also grateful for the infrastructure and collaboration of the Research Group on Solid Waste—RECICLOS—CNPq.

Funding

A funding declaration is mandatory for publication in this journal. Please confirm that this declaration is accurate, or provide an alternative.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. LMM helped in conceptualization, methodology, validation, formal analysis, experimental investigation, writing—original draft, writing—review & editing; RAFP helped in resources, funding acquisition, validation, writing—review & editing; JCM contributed to conceptualization, validation, formal analysis, resources, writing—review & editing, supervision, project administration. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Letícia Matias Martins.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, L.M., Peixoto, R.A.F. & Mendes, J.C. Quartzite tailings in civil construction materials: a systematic review. Clean Techn Environ Policy 25, 1807–1824 (2023). https://doi.org/10.1007/s10098-023-02492-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-023-02492-5

Keywords

Navigation