Skip to main content

Advertisement

Log in

Solid biofuels in Mexico: a sustainable alternative to satisfy the increasing demand for heat and power

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

A Correction to this article was published on 08 June 2018

This article has been updated

Abstract

Bioenergy is the largest renewable energy source in Mexico with an estimated 4–9% of total current energy demand. There are large uncertainties and contrasting estimates regarding its current extent and end-uses, particularly with traditional uses. However, a large potential exists to improve the efficiency of existing uses and, at the same time, to diversify the use of SBF in the industrial and power sectors. This paper aims at: providing the first updated and comprehensive estimate of current SBF demand in Mexico including traditional and modern uses; providing a consistent estimate of actual SBF supply potential; estimating the total potential substitution of fossil fuels that could be achieved by SBF considering an integrated “modernization scenario”; and finally describing the main barriers limiting SBF to fully triggering its potential. Results show that current SBF consumption reached 481 PJ/yr in 2015; SBF supply potential reaches 3622 PJ/yr, out of which 883 PJ/yr could be used to substitute up to 29% of current demand of FF, mitigating 66 MtCO2e/yr of greenhouse gas (GHG) emissions, or near 88 MtCO2e/yr if mitigation from traditional uses is added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 08 June 2018

    In the original publication of the article, the second sentence of four paragraph in the subsection Energy and GHG mitigation benefits from a diversified SBF portfolio should be “Fuel oil has the biggest substitution potential for SBF: It could be substituted in the industrial and power sectors. However, within the power sector, there is strong competition with natural gas, as currently old fuel oil power plants are being replaced with combined cycle natural gas (CCNG) plants” instead of “Fuel oil has the biggest substitution potential for SBF: It could be substituted in the industrial and electric sectors, although few power plants are still burning fuel oil and there is strong interest to replace them with combined cycle natural gas (CCNG) plants”.

Notes

  1. IPCC (Chum et al. 2011): Technical potential considers the limitations of the biomass production practices assumed to be employed and also takes into account concurrent demand for food, fodder, fiber, forest products and are requirements for human infrastructure. Restrictions connected to nature conservation and soil/water/biodiversity preservation can also be considered. In such cases, the term sustainable potential is sometimes used.

  2. It is worth noting that this paper does not aim at providing a thorough economic analysis of fossil fuels substitution by SBF. SBF prices are just a reference. Logistic costs must be added, mainly transport cost to the final users.

Abbreviations

BC:

Black carbon

CHP:

Combined heat and power

FF:

Fossil fuels

FW:

Fuelwood

GHG:

Greenhouse gases emissions

ICS:

Improved cookstoves

LPG:

Liquefied petroleum gas

MtCO2e :

Million tons of equivalent carbon dioxide

MtDM:

Million tons of dry matter

MtFWDM:

Million tons of fuelwood dry matter

NG:

Natural gas

PJ:

Petajoule

SBF:

Solid biofuel

SEMARNAT:

Mexico’s Federal Ministry of the Environment and Natural Resources

USD:

United States Dollar

Yr:

Year

References

  • Aldana H, Lozano FJ, Acevedo J (2014) Evaluating the potential for producing energy from agricultural residues in México using MILP optimization. Biomass Bioenergy 67:372–389. https://doi.org/10.1016/j.biombioe.2014.05.022

    Article  Google Scholar 

  • Berrueta VM, Edwards RD, Masera O (2008) Energy performance of wood-burning cookstoves in Michoacan, Mexico. Renew Energy 33(5):859–870. https://doi.org/10.1016/j.renene.2007.04.016

    Article  Google Scholar 

  • Chum H et al (2011) Bioenergy. In: IPCC special report on renewable energy sources and climate change mitigation. Cambridge University Press, Cambridge, UK and New York, NY, USA

  • CONVERSA (2017) Residuos forestales y especies no aprovechadas para la producción de bioenergía. México

  • Diario Oficial de la Federación (DOF) (2015) Ley de Transición Energética. http://dof.gob.mx/nota_detalle.php?codigo=5421295&fecha=24/12/2015. Accessed 04 May 2017

  • Diario Oficial de la Federación (DOF) (2016) Ley General de Cambio Climático, Pub. L. No. Última reforma publicada DOF 01-06-2016, 52. http://www.diputados.gob.mx/LeyesBiblio/pdf/LGCC_010616.pdf. Accessed 04 May 2017

  • EUBIONET (2008) Final result-oriented report. Efficient trading of biomass fuels and analysis of fuel supply chains and business models for market actors by networking. Jyväskylä, Finland

  • GACC-ICRW (2015) Global alliance for clean cookstoves—international center for research on women. Measuring social impact in the clean and efficient cooking sector: a how-to guide

  • García C, Riegelhaupt E, Ghilardi A, Skutsch M, Islas J, Manzini F, Masera O (2015) Sustainable bioenergy options for Mexico: GHG mitigation and costs. Renew Sustain Energy Rev 43:545–552. https://doi.org/10.1016/j.rser.2014.11.062

    Article  Google Scholar 

  • International Energy Agency—IEA (2012) Technology roadmap bioenergy for heat and power. Technology Roadmaps, Paris

    Book  Google Scholar 

  • International Energy Agency—IEA (2014) Heating without global warming. Market developments and policy considerations for renewable heat

  • International Energy Agency—IEA (2015) Mobilizing sustainable bioenergy supply chains. Inter-task project synthesis report

  • International Renewable Energy Agency—IRENA (2015) Renewable energy prospects: Mexico, REmap 2030 analysis. Abu Dhabi

  • IPCC (2006) IPCC guidelines for National greenhouse gas inventories. V2. Energy

  • Jetter J, Zhao Y, Smith KR, Khan B, Decarlo P, Hays MD et al (2012) Pollutant emissions and energy efficiency under controlled conditions for household biomass cookstoves and implications for metrics useful in setting international test standards. Environ Sci Technol 46:10827–10834

    Article  CAS  Google Scholar 

  • Johnson TM, Alatorre C, Romo Z, Liu F (2009) México: Estudio Sobre la Disminución de Emisiones de Carbono (MEDEC). The International Bank for Reconstruction and Development, World Bank, Washington, DC

    Google Scholar 

  • Kazagic A, Music M, Smajevic I, Ademovic A, Redzic E (2016) Possibilities and sustainability of biomass for power solutions in the case of a coal-based power utility. Clean Technol Environ Policy 18(6):1675–1683. https://doi.org/10.1007/s10098-016-1193-0

    Article  CAS  Google Scholar 

  • Masera Cerutti OR (2009) La Bioenergía en México. Un Catalizador del Desarrollo Sustentable. https://doi.org/10.1007/s13398-014-0173-7.2

    Article  Google Scholar 

  • Masera O, Berrueta V, García CA, Serrano-Medrano M, Martínez-Bravo R (2012) Escenarios de mitigación de gases efecto invernadero, carbono negro y otros forzadores climáticos de vida corta, mediante el uso de biocombustibles sólidos. Proyecto GEF-PIMS4371 CC Quinta Comunicación Nacional de México a la CMNUCC. GIRA A.C. Morelia, México

  • Masera O et al (2016) Estudio de viabilidad, barreras e impactos de opciones de aprovechamiento de recursos forestales para energía renovable. ENERFOR, Morelia

    Google Scholar 

  • Medina P, Berrueta V, Martínez M, Ruiz V, Edwards RD, Masera O (2017) Comparative performance of five Mexican plancha-type cookstoves using water boiling tests. Dev Eng. https://doi.org/10.1016/j.deveng.2016.06.001

    Article  Google Scholar 

  • Méndez-Vázquez A, Gómez-Castro F, Ponce-Ortega JM, Serafín-Muñoz A, Santibañez-Aguilar J, El-Halwagi M (2016) Mathematical optimization of a supply chain for the production of fuel pellets from residual biomass. Clean Technol Environ Policy 19:721–734. https://doi.org/10.1007/s10098-016-1257-1

    Article  CAS  Google Scholar 

  • Nunes LJ, Matias JC, Catalão JP (2016) Wood pellets as a sustainable energy alternative in Portugal. Renew Energy 85:1011–1016. https://doi.org/10.1016/j.renene.2015.07.065

    Article  Google Scholar 

  • Panepinto D, Viggiano F, Genon G (2014) The potential of biomass supply for energetic utilization in a small Italian region: Basilicata. Clean Technol Environ Policy 16:833–845. https://doi.org/10.1007/s10098-013-0675-6

    Article  Google Scholar 

  • Proskurina S, Alakangas E, Heinimö J, Mikkilä M, Vakkilainen E (2017) A survey analysis of the wood pellet industry in Finland: future perspectives. Energy 118:692–704. https://doi.org/10.1016/j.energy.2016.10.102

    Article  Google Scholar 

  • REN 21 (2016) Renewables 2016 global status report. REN21 Secretariat, Paris

  • REN 21 (2017) Renewables 2017 global status report. REN21 Secretariat, Paris

  • Reyes-Muro L et al (2013) Rastrojos: Manejo, uso y mercado en el centro y sur de México (Libro Técn). Mexico

  • Rios M, Kaltschmitt M (2013) Bioenergy potential in Mexico—status and perspectives on a high spatial distribution. Biomass Convers Biorefin 3(3):239–254. https://doi.org/10.1007/s13399-013-0085-3

    Article  Google Scholar 

  • SEMARNAT (2016) Anuario Estadístico de la Producción Forestal 2015. Mexico

  • SENER (2016) Balance Nacional de Energía 2015. Mexico

  • SENER-IMP (2018) Secretaría de Energía—Instituto Mexicano del Petróleo. Mapa de Ruta Tecnológica Biocombustibles Sólidos

  • Serrano-Medrano M, Arias-Chalico T, Ghilardi A, Masera O (2014) Spatial and temporal projection of fuelwood and charcoal consumption in Mexico. Energy Sustain Dev 19(1):39–46. https://doi.org/10.1016/j.esd.2013.11.007

    Article  Google Scholar 

  • Servicio de Administración Tributaria (SAT) (2014) Impuesto a los Combustibles Fósiles. http://www.sat.gob.mx/fichas_tematicas/reforma_fiscal/Paginas/combustibles_fosiles_2014.aspx. Accessed 27 Mar 2017

  • Sie (Sistema de Información Energética) (2016) SENER. http://sie.energia.gob.mx/. Accessed 28 Nov 2016

  • Tauro R, García CA, Skutsch M, Masera O (2018) The potential for sustainable biomass pellets in Mexico: an analysis of energy potential, logistic costs and market demand. Renew Sustain Energy Rev 82:380–389. https://doi.org/10.1016/j.rser.2017.09.036

    Article  Google Scholar 

  • Valdez-Vazquez I, Acevedo-Benítez J, Hernández-Santiago C (2010) Distribution and potential of bioenergy resources from agricultural activities in Mexico. Renew Sustain Energy Rev 14(7):2147–2153. https://doi.org/10.1016/j.rser.2010.03.034

    Article  CAS  Google Scholar 

  • van Loo S, Koppejan J (2008) The handbook of biomass combustion and co-firing, 1st edn. Earthscan, London. https://doi.org/10.1017/CBO9781107415324.004

    Book  Google Scholar 

  • WHO (2005) World Health Organization. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide

Download references

Acknowledgements

This study was supported by the projects: Fondo Sectorial CONACYT-SENER-FSE No. 219797 and Fondo Sectorial CONACYT-SENER-FSE (CEMIE-Bio) No. 246911. We would like to thank Enrique Riegelhaupt and René Martínez Bravo for their valuable feedback and comments to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl Tauro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tauro, R., Serrano-Medrano, M. & Masera, O. Solid biofuels in Mexico: a sustainable alternative to satisfy the increasing demand for heat and power. Clean Techn Environ Policy 20, 1527–1539 (2018). https://doi.org/10.1007/s10098-018-1529-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-018-1529-z

Keywords

Navigation