Clean Technologies and Environmental Policy

, Volume 19, Issue 2, pp 501–515 | Cite as

Evaluation of microalgae-based biorefinery alternatives

  • Daniel Fozer
  • Nora Valentinyi
  • Laszlo Racz
  • Peter Mizsey
Original Paper

Abstract

Microalgae-based biorefineries for the production of renewable biofuels like biodiesel, upgraded bio-oil, biochar, biogas and other high-value chemicals have received great attention in recent decades as potential major sources of energy for the future. Microalgae are a suitable species to produce biodiesel and other high energy density by-products; however, it is questionable whether a net energy gain can be realized or not considering the whole processing chain. In the present study, the energy balances of different algae-based biofuel and bioenergy production technologies are investigated in detail and compared to each other corresponding to a cradle-to-grave overall energetic analysis. The study includes cultivation, harvesting, cell pretreatments (cell disruption, drying, grinding), lipid extraction, transesterification, gasification and hydrothermal liquefaction with bio-oil stabilization and hydroprocessing. The energy consumption and energy gain are estimated for each operational step to determine the net energy ratio (NER, energy output over energy input) for the overall technologies studied. Our detailed investigation enables to detect the most energy consuming unit operation, that is, the bottleneck point(s) of the microalgae-based technologies which should be still improved in the future for the sake of more efficient algae-based biorefineries. The investigation makes also possible to evaluate and compare the different large scale alternatives for biomass transformation. Positive energy balances with a NER value of 1.109 and 1.137 are found in two already existing processes: open raceway ponds and closed photobioreactors, respectively. Our work gives also a detailed algorithm that can be followed at the evaluation of other microalgae-based biorefineries.

Keywords

Microalgae Net energy ratio Biorefinery Biodiesel Hydrothermal liquefaction 

Abbreviations

DAP

Diammonium phosphate

HHV

Higher heating value

HTL

Hydrothermal liquefaction

NER

Net energy ratio

MEA

Monoethanolamine

ORP

Open raceway pond

tPBR

Tubular photobioreactor

List of symbols

A

Roughness (−)

AORP

Surface of a raceway pond (m2)

cv

Specific heat of water (kJ kg−1 °C−1)

chex

Specific heat of hexane (kJ kg−1 °C−1)

cw

Latent heat of evaporation (kJ kg−1)

d

Pipe diameter (m)

dpond

Depth of a raceway pond (m)

Edryer

Energy need of drying (MJ)

Egasif

Energy need of gasification (MJ)

Ehex

Energy required to regenerate hexane (MJ)

Epurif

Energy need of flue gas purification (MJ)

Ep

Total energy demand of paddlewheels (kW)

Erec

Energy need of water recycling (MJ)

Erecirc,tPBR

Total energy demand of photobioreactors medium recirculation (kW)

Es

Energy need of steam production (MJ kg−1)

Ev

Usage of electricity (kW)

f

Friction factor (Blasius) (−)

g

Gravitational constant (m2 s−1)

h

Differential head (m)

kβ

Correction factor (−)

Lalgae

Microalgae mass lost during drying process (%)

le

Equivalent pipe length (m)

mac

Mass of algae cake (kg)

malgae

Mass of algae in the photobioreactor (kg)

\(m_{{{\text{CO}}_{2} }}\)

Mass of CO2 (kg)

mharv

Mass of harvested microalgae (kg)

ms

Mass of steam (kg)

mw

Mass of water (kg)

Nd

Number of days (−)

NORP

Number of raceway ponds (−)

NtPBR

Number of photobioreactor units (−)

Pp

Energy demand of a paddlewheel (kW)

\(P_{\text{recirc,tPBR}}\)

Recirculation energy demand of a photobioreactor (kW)

rm

Curve radius (m)

rharv

Rate of harvesting (−)

Re

Reynolds number (−)

V

Flow velocity (m s−1)

\(V_{{ {\text{centr}}}}\)

Recovered water through centrifugation (m3)

Vflocc

Recovered water through flocculation (m3)

Vholdup

Holdup in the photobioreactor (%)

VORP

Total volume of raceway ponds (m3)

VtPBR

Total volume of tubular photobioreactors (m3)

w

Mass flow of hexane (kg h−1)

γ

Efficiency of pumping (−)

ηdryer

Efficiency of drying (−)

ηgasif

Efficiency of gasification (−)

μ

Viscosity (kg m−1 s−1)

ξ

Elbows minor loss coefficient (−)

ρ

Density (kg m−3)

References

  1. Agblevor F, Petkovic L, Bennion E, Quinn J, Moses J, Newby D and Ginosar D (2014) Bio-oil separation and stabilization by supercritical fluid fractionation–2014 Final Report. Idaho National Laboratory. doi:10.2172/1136314
  2. Anastasakis K, Ross AB (2015) Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: an energetic analysis of the process and comparison with bio-chemical conversion methods. Fuel 139:546–553. doi:10.1016/j.fuel.2014.09.006 CrossRefGoogle Scholar
  3. Bennion EP, Ginosar DM, Moses J, Agblevor F, Quinn JC (2015) Lifecycle assessment of microalgae to biofuel: comparison of thermochemical processing pathways. Appl Energy. doi:10.1016/j.apenergy.2014.12.009 Google Scholar
  4. Biller P, Sharma BK, Kunwar B, Ross AB (2015) Hydroprocessing of bio-crude from continuous hydrothermal liquefaction of microalgae. Fuel 159:197–205. doi:10.1016/j.fuel.2015.06.077 CrossRefGoogle Scholar
  5. Blasi CD (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90. doi:10.1016/j.pecs.2006.12.001 CrossRefGoogle Scholar
  6. Brennan L, Owende P (2010) biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14(2):557–577. doi:10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  7. Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45(16):7060–7067. doi:10.1021/es2006995 CrossRefGoogle Scholar
  8. Carolina D, Barrañon C (2006) Methanol and hydrogen production: energy and cost analysis. Energy Eng 1–57. http://pure.ltu.se/portal/files/31007759/LTU-PB-EX-0654-SE.pdf. Accessed 05 March 2016
  9. Chaudry S, Bahri PA, Moheimani NR (2015) Pathways of processing of wet microalgae for liquid fuel production: a critical review. Renew Sustain Energy Rev 52:1240–1250. doi:10.1016/j.rser.2015.08.005 CrossRefGoogle Scholar
  10. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131. doi:10.1016/j.tibtech.2007.12.002 CrossRefGoogle Scholar
  11. Collet P, Spinelli D, Lardon L, Hélias A, Steyer J-P (2014) Biodiesel from microalgae-life cycle assessment and recommendations for potential improvements. Renew Energy 71:525–533. doi:10.1016/j.renene.2014.06.009 CrossRefGoogle Scholar
  12. Dassey AJ, Hall SG, Theegala CS (2014) An analysis of energy consumption for algal biodiesel production: comparing the literature with current estimates. Algal Res 4(1):89–95. doi:10.1016/j.algal.2013.12.006 CrossRefGoogle Scholar
  13. Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88(10):3473–3480. doi:10.1016/j.apenergy.2011.01.059 CrossRefGoogle Scholar
  14. Dianursanti PR, Wijanarko A (2015) Utilization of n-hexane as co-solvent to increase biodiesel yield on direct transesterification reaction from marine microalgae. Procedia Environ Sci 23:412–420. doi:10.1016/j.proenv.2015.01.059 CrossRefGoogle Scholar
  15. Dong C, Chen W, Liu C (2014) Flocculation of algal cells by amphoteric chitosan-based flocculant. Bioresour Technol 170:239–247. doi:10.1016/j.biortech.2014.07.108 CrossRefGoogle Scholar
  16. Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella Sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412. doi:10.1007/s10811-005-8701-7 CrossRefGoogle Scholar
  17. Duić N (2015) Is the success of clean energy guaranteed? Clean Technol Environ Policy 17(8):2093–2100. doi:10.1007/s10098-015-0969-y CrossRefGoogle Scholar
  18. Garcia AL, Vos MP, Torri C, Fabbri D, Kersten SRA, Brilman DWF (2013) Recycling nutrients in algae biorefinery. ChemSusChem 6(8):1330–1333. doi:10.1002/cssc.201200988 CrossRefGoogle Scholar
  19. Gikonyo Barnabas (2013) Advances in biofuel production algae and aquatic plants. Apple Academic Press, OakvilleCrossRefGoogle Scholar
  20. Gómez-Pérez CA, Espinosa J, Ruiz LCM, van Boxtel AJB (2015) CFD simulation for reduced energy costs in tubular photobioreactors using wall turbulence promoters. Algal Res 12:1–9. doi:10.1016/j.algal.2015.07.011 CrossRefGoogle Scholar
  21. González-Delgado ÁD, Kafarov V, El-Halwagi M (2015) Development of a topology of microalgae-based biorefinery: process synthesis and optimization using a combined forward-backward screening and superstructure approach. Clean Technol Environ Policy 17(8):2213–2228. doi:10.1007/s10098-015-0946-5 CrossRefGoogle Scholar
  22. Hu M et al (2016) A novel pilot-scale production of fuel gas by allothermal biomass gasification using biomass micron fuel (BMF) as external heat source. Clean Technol Environ Policy 18(3):743–751. doi:10.1007/s10098-015-1038-2 CrossRefGoogle Scholar
  23. IAE (2011) Technology roadmap—biofuels for transport. International Energy Agency, Paris, pp 1–56. doi:10.1787/9789264118461-en Google Scholar
  24. ITP Mining (1997) Energy and environmental profile of the US mining industry, Chapter 3, Potash, Soda Ash and Borates. pp 1–20. http://energy.gov/sites/prod/files/2013/11/f4/potash_soda_borate.pdf. Accessed 04 March 2016
  25. James SC, Boriah V (2010) Modeling algae growth in an open-channel raceway. J Comput Biol J comput Mol Cell Biol 17(7):895–906. doi:10.1089/cmb.2009.0078 CrossRefGoogle Scholar
  26. Johnson MC, Palou-Rivera I, Frank ED (2013) Energy consumption during the manufacture of nutrients for algae cultivation. Algal Res 2(4):426–436. doi:10.1016/j.algal.2013.08.003 CrossRefGoogle Scholar
  27. Keche AJ, Prasad A, Gaddale R (2014) Simulation of biomass gasification in downdraft gasifier for different biomass fuels using ASPEN PLUS. Clean Technol Environ Policy. doi:10.1007/s10098-014-0804-x Google Scholar
  28. Kent JA (2007) Kent and Riegel’s handbook of industrial chemistry and biotechnology, 1st edn. Springer, Berlin. doi:10.1007/978-0-387-27843-8 CrossRefGoogle Scholar
  29. Khasraghi MI, Sefidkouhi MA, Valipour M (2015) Simulation of open- and closed-end border irrigation systems using SIRMOD. Arch Agron Soil Sci 61(7):929–941. doi:10.1080/03650340.2014.981163 CrossRefGoogle Scholar
  30. Khoo HH, Koh CY, Shaik MS, Sharratt PN (2013) Bioenergy co-products derived from microalgae biomass via thermochemical conversion-life cycle energy balances and CO2 emissions. Bioresour Technol 143:298–307. doi:10.1016/j.biortech.2013.06.004 CrossRefGoogle Scholar
  31. Lardon L, Hélias A, Sialve B, Steyer JP, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481. doi:10.1021/es900705j CrossRefGoogle Scholar
  32. López Barreiro D, Prins W, Ronsse F, Brilman W (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: state of the art review and future prospects. Biomass Bioenergy 53:113–127. doi:10.1016/j.biombioe.2012.12.029 CrossRefGoogle Scholar
  33. Mayfield (2012) Food and fuels fot the 21st century—Founders’s symposium, University of California, San Diego. www.uctv.tv/shows/Food-and-Fuel-for-the-21st-Century-with-Stephen-Mayfield-Founders-Symposium-2012-24693. Accessed 08 June 2016
  34. Mizsey P, Racz L (2010) Cleaner production alternatives: biomass utilisation options. J Clean Prod 18(8):767–770. doi:10.1016/j.jclepro.2010.01.007 CrossRefGoogle Scholar
  35. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuesl 20(4):848–889. doi:10.1021/ef0502397 Google Scholar
  36. Molina E, Fernández J, Acién FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92(2):113–131. doi:10.1016/S0168-1656(01)00353-4 CrossRefGoogle Scholar
  37. Morad NA, Idrees M, Hasan AA (1995) Specific heat capacities of pure triglycerides by heat-flux differential scanning calorimetry. J Therm Anal 45(6):1449–1461. doi:10.1007/BF02547438 CrossRefGoogle Scholar
  38. Nagy T, Mizsey P (2013) Effect of fossil fuels on the parameters of CO2 capture. Environ Sci Technol 47(15):8948–8954. doi:10.1021/es400306u Google Scholar
  39. Ozkan A, Kinney K, Katz L, Berberoglu H (2012) Reduction of water and energy requirement of algae cultivation using an algae biofilm photobioreactor. Bioresour Technol 114:542–548. doi:10.1016/j.biortech.2012.03.055 CrossRefGoogle Scholar
  40. Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energy 88(10):3377–3388. doi:10.1016/j.apenergy.2011.04.023 CrossRefGoogle Scholar
  41. Pokoo-Aikins G, Nadim A, El-Halwagi MM, Mahalec V (2010) A multi-criteria approach to screening alternatives for converting sewage sludge to biodiesel. J Loss Prev Process Ind 23(3):412–420. doi:10.1016/j.jlp.2010.01.005 CrossRefGoogle Scholar
  42. Rogers JN et al (2013) A critical analysis of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales. Algal Res 4:76–88. doi:10.1016/j.algal.2013.11.007 CrossRefGoogle Scholar
  43. Sander K, Murthy GS (2010) Life cycle analysis of algae biodiesel. Int J Life Cycle Assess 15(7):704–714. doi:10.1007/s11367-010-0194-1 CrossRefGoogle Scholar
  44. Shirvani T (2011) Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy Environ Sci. doi:10.1039/c1ee01791h Google Scholar
  45. Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production—a review. Renew Sustain Energy Rev 16(4):2347–2353. doi:10.1016/j.rser.2012.01.026 CrossRefGoogle Scholar
  46. Skorupskaite V, Makareviciene V, Gumbyte M (2016) Opportunities for simultaneous oil extraction and transesterification during biodiesel fuel production from microalgae: a review. Fuel Process Technol. doi:10.1016/j.fuproc.2016.05.002 Google Scholar
  47. Slater CS, Savelski MJ, Kostetskyy P, Johnson M (2015) Shear-enhanced microfiltration of microalgae in a vibrating membrane module. Clean Technol Environ Policy. doi:10.1007/s10098-015-0907-z Google Scholar
  48. Slegers PM, van Beveren PJM, Wijffels RH, van Straten G, van Boxtel AJB (2013) Scenario analysis of large scale algae production in tubular photobioreactors. Appl Energy 105:395–406. doi:10.1016/j.apenergy.2012.12.068 CrossRefGoogle Scholar
  49. Slegers PM, Koetzier BJ, Fasaei F, Wijffels RH, van Straten G, van Boxtel AJB (2014) A model-based combinatorial optimisation approach for energy-efficient processing of microalgae. Algal Res 5:140–157. doi:10.1016/j.algal.2014.07.004 CrossRefGoogle Scholar
  50. Sompech K, Chisti Y, Srinophakun T (2012) Design of raceway ponds for producing microalgae. Biofuels 3(4):387–397. doi:10.4155/bfs.12.39 CrossRefGoogle Scholar
  51. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96. doi:10.1263/jbb.101.87 CrossRefGoogle Scholar
  52. Stec M et al (2015) Demonstration of a post-combustion carbon capture pilot plant using amine-based solvents at the Łaziska Power Plant in Poland. Clean Technol Environ Policy. doi:10.1007/s10098-015-1001-2 Google Scholar
  53. Surendhiran D, Vijay M (2013) Study on flocculation efficiency for harvesting nannochloropsis oculata for biodiesel production. Int J ChemTech Res 5(4):1761–69. www.researchgate.net/profile/Surendhiran_Duraiarasan/publication/268977859_Study_on_Flocculation_Efficiency_for_Harvesting_Nannochloropsis_oculata_for_Biodiesel_Production/links/547c3ee30cf205d16881e78a.pdf. Accessed 04 March 2016
  54. Takesi Y (2010) In: Zero-Carbon energy kyoto: proceedings of the second international symposium of global COE program energy science in the age of global warming—toward CO2 zero-emission energy system, Kyoto, JapanGoogle Scholar
  55. Tu Q, Lu M, Yang YJ, Scott D (2016) Water consumption estimates of the biodiesel process in the US. Clean Technol Environ Policy 18(2):507–516. doi:10.1007/s10098-015-1032-8 CrossRefGoogle Scholar
  56. Valipour M (2012) Sprinkle and trickle irrigation system design using tapered pipes for pressure loss adjusting. J Agric Sci 4(12). www.ccsenet.org/journal/index.php/jas/article/view/20118. Accessed 07 June 2016
  57. Valipour M (2014a) A comprehensive study on irrigation management in Asia and oceania. Arch Agron Soil Sci. doi:10.1080/03650340.2014.986471 Google Scholar
  58. Valipour M (2014b) Future of agricultural water management in Africa. Arch Agron Soil Sci. doi:10.1080/03650340.2014.961433 Google Scholar
  59. Valipour M, Sefidkouhi MAG, Eslamian S (2015) Surface irrigation simulation models: a review. Int J Hydrol Sci Technol 5(1):51–70. doi:10.1504/IJHST.2015.069279 CrossRefGoogle Scholar
  60. WAB (2015) DYNO-Mill ECM, high-efficiency agitator bead mill. Willy A. Bachofen AG Machinenfabrik. www.wab.ch/fileadmin/redaktion/downloads/prospekt/EN_ECM_Leaflet.pdf. Accessed 02 Feb 2016
  61. Wang MQ (1996) GREET 1.5-transportation fuel-cycle model-vol. 1: methodology, development, use, and results. 239. www.osti.gov/energycitations/product.biblio.jsp?osti_id=14775. Accessed 05 March 2016
  62. Wang M, Joel AS, Ramshaw C, Eimer D, Musa NM (2015) Process intensification for post-combustion CO2 capture with chemical absorption: a critical review. Appl Energy 158:275–91. Accessed 02 March 2016Google Scholar
  63. Williams PJLB, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3(5):554. doi:10.1039/b924978h CrossRefGoogle Scholar
  64. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507. doi:10.1016/j.jbiotec.2006.05.002 CrossRefGoogle Scholar
  65. Xu B, Li P, Waller P (2014) Study of the flow mixing in a novel ARID raceway for algae production. Renew Energy 62:249–257. doi:10.1016/j.renene.2013.06.049 CrossRefGoogle Scholar
  66. Yap BHJ, Crawford SA, Dumsday GJ, Scales PJ, Martin GOJ (2014) A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction. Algal Res 5:112–120. doi:10.1016/j.algal.2014.07.001 CrossRefGoogle Scholar
  67. Yen HW et al (2013) Microalgae-based biorefinery-from biofuels to natural products. Bioresour Technol 135:166–174. doi:10.1016/j.biortech.2012.10.099 CrossRefGoogle Scholar
  68. Zaimes GG, Khanna V (2013) Supporting information for: microalgal biomass production pathways: evaluation of life cycle environmental impacts. Biotechnol Biofuels. doi:10.1186/1754-6834-6-88 Google Scholar
  69. Zhang X, Yan S, Tyagi RD, Surampalli RY (2013) Energy balance and greenhouse gas emissions of biodiesel production from oil derived from wastewater and wastewater sludge. Renew Energy 55:392–403. doi:10.1016/j.renene.2012.12.046 CrossRefGoogle Scholar
  70. Zhao B, Su Y (2014) Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew Sustain Energy Rev 31:121–132. doi:10.1016/j.rser.2013.11.054 CrossRefGoogle Scholar
  71. Ziska LH (2008) Rising atmospheric carbon dioxide and plant biology: the overlooked paradigm. DNA Cell Biol 27(4):165–172. doi:10.1089/dna.2007.0726 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Chemical and Environmental Process Engineering, The Faculty of Chemical and Biochemical EngineeringBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations