Skip to main content
Log in

Process development for the removal of toxic metals by functionalized wood pulp: kinetic, thermodynamic, and computational modeling approach

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

A new composite, itaconic acid grafted poly(vinyl) alcohol encapsulated wood pulp (IA-g-PVA-en-WP) was prepared and used for heavy metal removal [11.63 mg g−1; 93.03 % for Cd(II), 11.90 mg g−1; 95.18 % for Pb(II), and 12.14 mg g−1; 97.08 % for Ni(II)] by batch biosorption equilibrium technique. Morphological and textural features of the product were studied using SEM and BET analysis. The biosorption kinetics and thermodynamic analysis were studied for all the system to determine intraparticle and boundary layer diffusion as the rate determining steps and feasible, spontaneous and exothermic nature of biosorption at 298–318 K. The preciseness of kinetic models to experimental equilibrium data was checked by error analysis. A multilayer feed forward artificial neural network model with 15 hidden neurons at 1500 epochs was developed to predict the biosorption efficiency of the biomaterial. This model was found to be operating adequately with good correlation [R 2 = 0.997, 0.998, and 0.995 for Cd(II), Pb(II) and Ni(II)] and minimum mean square error demonstrating its good generalization potential. These findings provide an intriguing approach for the development of pre-treatment process for heavy metal decontamination from wastewater at a reduced cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aghav RM, Kumar S, Mukherjee SN (2011) Artificial neural network modeling in competitive adsorption of phenol and resorcinol from water environment using some carbonaceous adsorbents. J Hazard Mater 188:67–77. doi:10.1016/j.jhazmat.2011.01.067

    Article  CAS  Google Scholar 

  • Alvarez MS, Gutierrez E, Rodríguez A, Sanroman MA, Deive FJ (2014) Environmentally benign sequential extraction of heavy metals from marine sediments. Ind Eng Chem Res 53:8615–8620. doi:10.1021/ie500927q

    Article  CAS  Google Scholar 

  • Amin MN, Mustafa AI, Khalil MI, Rahman M, Nahid I (2012) Adsorption of phenol onto rice straw bio waste for water purification. Clean Technol Environ Policy 14:837–844. doi:10.1007/s10098-012-0449-6

    Article  CAS  Google Scholar 

  • Caliman F, Robu B, Smaranda C, Pavel V, Gavrilescu M (2011) Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Technol Environ Policy 13:241–268. doi:10.1007/s10098-010-0319-z

    Article  Google Scholar 

  • Cavas L, Karabay Z, Alyuruk H, Dogan H, Demir GK (2011) Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves. Chem Eng J 171:557–562. doi:10.1016/j.cej.2011.04.030

    Article  CAS  Google Scholar 

  • Chouchene A, Jeguirim M, Trouve G (2014) Biosorption performance, combustion behavior, and leaching characteristics of olive solid waste during the removal of copper and nickel from aqueous solutions. Clean Technol Environ Policy 16:979–986. doi:10.1007/s10098-013-0680-9

    Article  CAS  Google Scholar 

  • Choudhary S, Goyal V, Singh S (2015) Removal of copper(II) and chromium(VI) from aqueous solution using sorghum roots (S. bicolor): a kinetic and thermodynamic study. Clean Technol Environ Policy 17:1039–1051. doi:10.1007/s10098-014-0860-2

    Article  CAS  Google Scholar 

  • Donia AM, Atia AA, Abouzayed FI (2012) Preparation and characterization of nano magnetic cellulose with fast kinetic properties towards adsorption of some metal ions. Chem Eng J 191:22–30. doi:10.1016/j.cej.2011.08.034

    Article  CAS  Google Scholar 

  • Fan HT, Liu JX, Yao H, Zhang ZG, Yan F, Li WX (2014) Ionic imprinted silica-supported hybrid sorbent with an anchored chelating schiff base for selective removal of cadmium(II) ions from aqueous media. Ind Eng Chem Res 53:369–378. doi:10.1021/ie4027814

    Article  CAS  Google Scholar 

  • Ghosh A, Das P, Sinha K (2015) Modeling of biosorption of Cu(II) by alkali-modified spent tea leaves using response surface methodology (RSM) and artificial neural network (ANN). Appl Water Sci 5:191–199. doi:10.1007/s13201-014-0180-z

    Article  CAS  Google Scholar 

  • Goyal P, Srivastava S (2009) Characterization of novel Zea mays based biomaterial designed for toxic metals biosorption. J Hazard Mater 172:1206–1211. doi:10.1016/j.jhazmat.2009.07.125

    Article  CAS  Google Scholar 

  • Gupta VK, Rastogi A, Nayak A (2010) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342:135–141. doi:10.1007/s11356-012-1194-4

    Article  CAS  Google Scholar 

  • Gupta VK, Pathania D, Sharma S, Agarwal S, Singh P (2013) Remediation of noxious chromium(VI) utilizing acrylic acid grafted lignocellulosic adsorbent. J Mol Liq 177:343–352. doi:10.1016/j.molliq.2012.10.017

    Article  CAS  Google Scholar 

  • Jain P, Varshney S, Srivastava S (2015) Site-specific functionalization for chemical speciation of Cr(III) and Cr(VI) using polyaniline impregnated nanocellulose composite: equilibrium, kinetic, and thermodynamic modeling. Appl Water Sci. doi:10.1007/s13201-015-0356-1

    Google Scholar 

  • Kanyal M, Bhatt AA (2015) Removal of heavy metals from water (Cu and Pb) using household waste as an adsorbent. J Bioremediat Biodegrad 6:269–275. doi:10.4172/2155-6199.1000269

    Google Scholar 

  • Kardam A, Raj KR, Srivastava S, Srivastava MM (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16:385–393. doi:10.1007/s10098-013-0634-2

    Article  CAS  Google Scholar 

  • Liu W, Yin P, Liu X, Dong X, Zhang J, Xu Q (2013) Thermodynamics, kinetics, and isotherms studies for gold(III) adsorption using silica functionalized by diethylenetriaminemethylenephosphonic acid. Chem Eng Res Des 91:2748–2758. doi:10.1016/j.cherd.2013.05.003

    Article  CAS  Google Scholar 

  • Moyo M, Lindiwe ST, Sebata E, Nyamunda BC, Guyo U (2015) Equilibrium, kinetic, and thermodynamic studies on biosorption of Cd(II) from aqueous solution by biochar. Res Chem Intermed. doi:10.1007/s11164-015-2089-z

    Google Scholar 

  • Nethaji S, Sivasamy A (2014) Removal of hexavalent chromium from aqueous solution using activated carbon prepared from walnut shell biomass through alkali impregnation processes. Clean Technol Environ Policy 16:361–368. doi:10.1007/s10098-013-0619-1

    Article  CAS  Google Scholar 

  • Ofomaja AE (2010) Intraparticle diffusion process for lead(II) biosorption onto mansonia wood sawdust. Bioresour Technol 101:5868–5876. doi:10.1016/j.biortech.2010.03.033

    Article  CAS  Google Scholar 

  • Ozdemir U, Ozbay B, Veli S, Zor S (2011) Modeling adsorption of sodium dodecyl benzene sulfonate (SDBS) onto polyaniline (PANI) by using multi linear regression and artificial neural networks. Chem Eng J 178:183–190. doi:10.1016/j.cej.2011.10.046

    Article  Google Scholar 

  • Rahman N, Haseen U (2014) Equlibrium modeling, kinetic, and thermodynamic studies on adsorption of Pb(II) by a hybrid inorganic–organic material: polyacrylamide zirconium(IV) iodate. Ind Eng Chem Res 53:8198–8207. doi:10.1021/ie500139k

    Article  CAS  Google Scholar 

  • Rodríguez-Martínez CE, Gonzalez-Acevedo ZI, Olguin MT, Frias-Palos H (2016) Adsorption and desorption of selenium by two non-living biomasses of aquatic weeds at dynamic conditions. Clean Technol Environ Policy 18:33–44. doi:10.1007/s10098-015-0987-9

    Article  Google Scholar 

  • Shafeeyan MS, Daud WMA, Shamiri AA (2014) Review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption. Chem Eng Res Des 92:961–988. doi:10.1016/j.cherd.2013.08.018

    Article  CAS  Google Scholar 

  • Singh K, Arora JK, Sinha TJM, Srivastava S (2014) Functionalization of nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: computational modeling approach. Clean Techn Environ Policy 16:1179–1191. doi:10.1007/s10098-014-0717-8

    Article  CAS  Google Scholar 

  • Suditu GD, Curteanu S, Bulgariu L (2013) Neural networks-based modeling applied to a process of heavy metals removal from wastewaters. J Environ Sci Health A 48:1399–1412. doi:10.1080/10934529.2013.781896

    Article  CAS  Google Scholar 

  • Sulaymon AH, Ebrahim SE, Ridha MMJ (2013) Equilibrium, kinetic and thermodynamic biosorption of Pb(II), Cr(III) and Cd(II) ions by dead anaerobic biomass from synthetic wastewater. Environ Sci Pollut Res 20:175–187. doi:10.1007/s11356-012-0854-8

    Article  CAS  Google Scholar 

  • Turan NG, Mesci B, Ozgonenel O (2011) Artificial neural network (ANN) approach for modeling Zn(II) adsorption from leachate using a new biosorbent. Chem Eng J 173:98–105. doi:10.1016/j.cej.2011.07.042

    Article  CAS  Google Scholar 

  • Ucar S, Erdem M, Tay T, Karagöz S (2015) Removal of lead(II) and nickel(II) ions from aqueous solution using activated carbon prepared from rapeseed oil cake by Na2CO3 activation. Clean Tech Environ Policy 17:747–756. doi:10.1007/s10098-014-0830-8

    Article  CAS  Google Scholar 

  • Varshney S, Jain P, Srivastava S (2015) Rapid adsorption of heavy metals by nitrogen-embedded cellulose using isotherm, kinetic and thermodynamic modeling. Int J Sci Technol Manag 4:1–11

    Google Scholar 

  • Varshney S, Jain P, Srivastava S (2016) Designing and potential use of tailored wood pulp to remove heavy metals from aqueous system: kinetic and thermodynamic studies. Sep Sci Technol. doi:10.1080/01496395.2016.1165247

    Google Scholar 

  • Yao ZY, Qi JH, Wang LH (2010) Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell. J Hazard Mater 174:137–143. doi:10.1016/j.jhazmat.2009.09.027

    Article  CAS  Google Scholar 

  • Zargoosh K, Abedini H, Abdolmaleki A, Molavian MR (2013) Effective removal of heavy metal ions from industrial wastes using thiosalicylhydrazide-modified magnetic nanoparticles. Ind Eng Chem Res 52:14944–14954. doi:10.1021/ie401971w

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Director, Prof. P.K. Kalra, Dayalbagh Educational Institute, Dayalbagh, Agra, for providing necessary research facilities. Shilpa Varshney is grateful to Council of Scientific and Industrial Research, New Delhi, India, for rendering financial assistance. Prof. Sahab Dass, Head and Prof. M. M. Srivastava, Department of Chemistry, Dayalbagh Educational Institute, are gratefully acknowledged for fruitful scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshney, S., Jain, P., Arora, J.K. et al. Process development for the removal of toxic metals by functionalized wood pulp: kinetic, thermodynamic, and computational modeling approach. Clean Techn Environ Policy 18, 2613–2623 (2016). https://doi.org/10.1007/s10098-016-1175-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-016-1175-2

Keywords

Navigation