Skip to main content

Advertisement

Log in

Adsorptive desulfurization by zinc-impregnated activated carbon: characterization, kinetics, isotherms, and thermodynamic modeling

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Sulfur oxides emission because of burning of liquid fuels has become a global environmental challenge. Refineries need to meet ever-stringent liquid fuel standards by using newer desulfurization methods. Present paper reports the results of the studies on adsorptive removal of sulfur compounds from model fuel by zinc-impregnated granular activated carbon (GAC). Zn-loaded adsorbent (Zn-GAC) prepared by wet impregnation method was characterized for its textural, morphological, and structural characteristics by different techniques like liquid nitrogen adsorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The adsorbent was further used for the removal of dibenzothiophene (DBT), a sulfur compound, from iso-octane. Equilibrium adsorption was obtained in 6 h. The equilibrium adsorption data were well represented by the Redlich–Peterson isotherm. Thermodynamic parameters were calculated by applying the van’t Hoff and Clausius–Clapeyron equations. Values of change in enthalpy and entropy were found to be 4.89 kJ/mol and 30 J/mol K, respectively. Isosteric heat of adsorption was correlated with surface coverage and heterogeneous nature of the Zn-GAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

a R :

R–P isotherm constant (L/mmol)

B 1 :

Heat of adsorption (kJ/mol)

C e :

Liquid phase concentration of the adsorbate at equilibrium (mmol/L)

h :

Initial adsorption rate (mmol/g min)

I :

Thickness of the boundary layer (mmol/g)

k f :

Pseudo-first-order rate constant (min−1)

k s :

Pseudo-second-order rate constant (g/mmol-min)

k id :

Intra-particle diffusion rate constant (mmol/g min0.5)

K F :

Freundlich constant (L/mmol)

K L :

Langmuir adsorption constant (L/mmol)

K R :

R–P isotherm constant (L/mmol)

K T :

Equilibrium binding constant (L/mol)

q e :

Uptake of the adsorbate by the adsorbent at equilibrium (mmol/g)

q m :

Adsorption capacity of the adsorbent(=K R/a R) (mmol/g)

R 2 :

Coefficient of determination (−)

SSE:

Sum of square of error

T :

Temperature (K)

β :

R–P isotherm constant (−)

1/n :

Freundlich constant (−)

G o :

Gibbs free energy (kJ/mol)

H o :

Enthalpy change (kJ/mol)

S o :

Entropy change (J/K mol)

References

  • Abdullah WNW, Bakar WAWA, Ali R, Embong Z (2015) Oxidative desulfurization of commercial diesel catalyzed by tert-butyl hydroperoxide polymolybdate on alumina: optimization by Box-Behnken design. Clean Technol Environ Policy 17:433–441

    Article  Google Scholar 

  • Aravindhan R, Rao JR, Nair BU (2007) Removal of basic yellow dye from aqueous solution by sorption on green alga Caulerpa scalpelliformis. J Hazard Mater 142:68–76

    Article  CAS  Google Scholar 

  • Asilturk M, Sayılkan F, Arpac E (2009) Effect of Fe3+ ion doping to TiO2 on the photocatalytic degradation of malachite green dye under UV and vis-irradiation. J Photochem Photobiol A 203:64–71

    Article  Google Scholar 

  • Barrett EP, Joyer LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances: computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  • Blanchard G, Maunaye M, Martin G (1984) Removal of heavy metals from waters by means of natural zeolites. Water Res 18:1501–1507

    Article  CAS  Google Scholar 

  • Boniek D, Figueiredo D, dos Santos AFB, Stoianoff MAR (2015) Biodesulfurization: a mini review about the immediate search for the future technology. Clean Technol Environ Policy 17:29–37

    Article  Google Scholar 

  • Chen Y, Zhang F, Fang Y, Zhu X, Zhen W, Wang R, Ma J (2013) Phosphotungstic acid containing ionic liquid immobilized on magnetic mesoporous silica rod catalyst for the oxidation of dibenzothiophene with H2O2. Catal Commun 38:54–58

    Article  CAS  Google Scholar 

  • Dedual G, MacDonald MJ, Alshareef A, Wu Z, Tsang DCW, Yip ACK (2014) Requirements for effective photocatalytic oxidative desulfurization of a thiophene-containing solution using TiO2. J Environ Chem Eng 2:1947–1955

    Article  CAS  Google Scholar 

  • Do DD, Do HD (1997) A new adsorption isotherm for heterogeneous adsorbent based on the isosteric heat as a function of loading. Chem Eng Sci 52(2):297–310

    Article  CAS  Google Scholar 

  • Erdogan S, Koytepe S, Seckin T, Onal Y, Vural S, Basar CA (2014) V2O5–polyimide hybrid material: synthesis characterization and sulfur removal properties in fuels. Clean Technol Environ Policy 16:619–628

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385–471

    CAS  Google Scholar 

  • Gao ZM, Bandosz TJ, Zhao ZB, Han M, Liang CH, Qiu JS (2008) Investigation of the role of surface chemistry and accessibility of cadmium adsorption sites on open-surface carbonaceous materials. Langmuir 24:11701–11710

    Article  CAS  Google Scholar 

  • Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Jiao H-Y, Yang L-N, Shen J, Li J, Qi Y-T (2006) Desulfurization of FCC gasoline over mordenite modified with Al2O3 Pet. Sci Technol 24:1301–1306

    CAS  Google Scholar 

  • Kumar S, Srivastava VC, Badoni RP (2011) Studies on adsorptive desulfurization by zirconia based adsorbents. Fuel 90:3209–3216

    Article  CAS  Google Scholar 

  • Kumar S, Srivastava VC, Badoni RP (2012) Oxidative desulfurization by chromium promoted sulfated zirconia. Fuel Process Technol 93:18–25

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Ling Z, Wan P, Yu C, Xiao N, Yang JY, Long Y, Qiu JS (2015) One-pot fabrication of calcium oxide/carbon foam composites for the adsorption of trace SO2. Chem Eng J 259:894–899

    Article  CAS  Google Scholar 

  • Luo MF, Xing JM, Liu HZ (2003) Desulfurization of dibenzothiophene by lyophilized cells of Pseudomonas delafieldii R-8 in the presence of dodecane. Biochem Eng J 13:1–6

    Article  CAS  Google Scholar 

  • Marousek J (2013) Use of continuous pressure shockwaves apparatus in rapeseed oil processing. Clean Technol Environ Policy 15:721–725

    Article  CAS  Google Scholar 

  • Marousek J, Haskova S, Zeman R, Vachal J, Vanıckova R (2015) Assessing the implications of EU subsidy policy on renewable energy in Czech Republic. Clean Technol Environ Policy 17:549–554

    Article  Google Scholar 

  • McKay G, Otterburn MS, Sweeney AG (1980) The removal of color from effluent using various adsorbents. III Silica: rate processes. Water Res 14:15–20

    Article  CAS  Google Scholar 

  • Mokhtar WNAW, Bakar WA, Ali R, Kadir AA (2015) Catalytic oxidative desulfurization of diesel oil by Co/Mn/Al2O3 catalysts—tert-butyl hydroperoxide (TBHP) system: preparation, characterization, reaction, and mechanism. Clean Techn Environ Policy 17:1487–1497

    Article  Google Scholar 

  • Muzic M, Katica Sertic-Bionda K, Adzamic T (2012) Evaluation of commercial adsorbents and their application for desulfurization of model fuel. Clean Techn Environ Policy 14:283–290

    Article  CAS  Google Scholar 

  • Ngamcharussrivichai C, Chatratananon C, Nuntang S, Prasassarakich P (2008) Adsorptive removal of thiophene and benzothiophene over zeolites from mae moh coal fly ash. Fuel 87:2347–2351

    Article  CAS  Google Scholar 

  • Rakesh-Kumar D, Srivastava VC (2012) Studies on adsorptive desulfurization by activated carbon. Clean–Soil Air Water 40:545–550

    Article  CAS  Google Scholar 

  • Rameshraja D, Srivastava VC, Kushwaha JP, Mall ID (2012) Quinoline adsorption onto granular activated carbon and bagasse fly ash. Chem Eng J 181–182:343–351

    Article  Google Scholar 

  • Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024

    Article  CAS  Google Scholar 

  • Shafi R, Hutchings GJ (2000) Hydrodesulfurization of hindered dibenzothiophenes: an overview. Catal Today 59:423–442

    Article  CAS  Google Scholar 

  • Soleimani M, Bassi A, Margaritis A (2007) Biodesulfurization of refractory organic sulfur compounds in fossil fuels. Biotechnol Adv 25:570–596

    Article  CAS  Google Scholar 

  • Srivastav A, Srivastava VC (2009) Adsorptive desulfurization by activated alumina. J Hazard Mater 170:1133–1140

    Article  CAS  Google Scholar 

  • Srivastava VC (2012) An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv 2:759–783

    Article  Google Scholar 

  • Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM (2006) Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium kinetics and thermodynamics. Colloids Surf A 272:89–104

    Article  CAS  Google Scholar 

  • Srivastava VC, Mall ID, Mishra IM (2007) Adsorption thermodynamics and isosteric heat of adsorption of toxic metal ions onto bagasse fly ash (BFA) and rice husk ash (RHA). Chem Eng J 132(1–3):267–278

    Article  CAS  Google Scholar 

  • Suresh S, Srivastava VC, Mishra IM (2011) Study of catechol and resorcinol adsorption mechanism through granular activated carbon characterization, pH and kinetic study. Sep Sci Technol 46(11):1750–1766

    Article  CAS  Google Scholar 

  • Tang Q, Lin S, Chenq Y, Liu S, Xiong JR (2013) Ultrasound-assisted oxidative desulfurization of bunker-C oil using tert-butyl hydroperoxide. Ultrason Sonochem 20:1168–1175

    Article  CAS  Google Scholar 

  • Tempkin MJ, Pyzhev V (1940) Heavy metals removal and isotherms study. Acta Physiochim URSS 12:217–222

    Google Scholar 

  • Weber WJ Jr, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–59

    Google Scholar 

  • Whitehurst DD, Isoda T, Mochida I (1998) Present state of the art and future challenges in the hydrodesulphurization of poly aromatic sulfur compounds. Adv Catal 42:345–471

    CAS  Google Scholar 

  • Young DM, Crowell AD (1962) Physical adsorption of gases. Butterworths, London

    Google Scholar 

  • Yu C, Qiu JS, Sun YF, Li XH, Chen G (2008) Adsorption removal of thiophene and dibenzothiophene from oils with activated carbon as adsorbent: effect of surface chemistry. J Porous Mater 15:151–157

    Article  CAS  Google Scholar 

  • Yu C, Fan X, Yu L, Bandosz TJ, Zho Z, Qiu J (2013a) Adsorptive removal of thiophenic compounds from oils by activated carbon modified with concentrated nitric acid. Energy Fuels 27:1499–1505

    Article  CAS  Google Scholar 

  • Yu C, Sun YF, Fan XM, Zhao ZB, Qiu JS (2013b) Hierarchical carbon-encapsulated iron nanoparticles as a magnetically separable adsorbent for removing thiophene in liquid fuel. Part Part Syst Char 30:637–644

    Article  CAS  Google Scholar 

  • Zeng Y-P, Ju S, Xing WH, Chen CL (2008) Adsorption of mercaptan from model gasoline on 13X loaded with Zn+2. Can J Chem Eng 86:186–191

    Article  Google Scholar 

  • Zhou H, Li G, Wang X, Jin C, Chen Y (2009) Preparation of a kind of mesoporous carbon and its performance in adsorptive desulfurization. J Nat Gas Chem 18:365–368

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Chandra Srivastava.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 569 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thaligari, S.K., Srivastava, V.C. & Prasad, B. Adsorptive desulfurization by zinc-impregnated activated carbon: characterization, kinetics, isotherms, and thermodynamic modeling. Clean Techn Environ Policy 18, 1021–1030 (2016). https://doi.org/10.1007/s10098-015-1090-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-015-1090-y

Keywords

Navigation