Skip to main content
Log in

Toluene removal in membrane bioreactors under recirculating and non-recirculating liquid conditions

  • Original paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

A single-, dual- and multiple-tube dense phase silicone rubber membrane bioreactor were investigated for control of toluene-contaminated air under circulating and non-recirculating liquid conditions. A mathematical model was developed to describe the system. The reactors were seeded with a mixed bacterial consortium isolated from activated sludge and capable of aromatic biodegradation. After operating with recirculating liquid nutrient solution, the reactors were operated with no recirculation of the liquid, for 50 days or more in each instance. Average toluene removal measured in the single-tube reactor was 93 ppm with recirculating liquid and 102 ppm without recirculation of the liquid. Average removal measured in the dual-tube reactor was 396 ppm with recirculating liquid and 319 ppm without recirculation of the liquid. Operation under stagnant liquid conditions had no significant detrimental impact on bioreactor performance. Biokinetic parameters were measured for both the suspension and biofilm with values of the maximum specific utilization rate values (k) ranging from 0.01 to 0.42 h−1 and half saturation constant values (K S) ranging from 1.5 to 14.3 mg L−1. Results suggest that membrane bioreactors might be operated under non-recirculating liquid conditions without performance detriment, reducing or eliminating the energy requirements and costs associated with pump operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

ATTC:

American Type Culture Collection

BTEX:

Benzene, toluene, ethylbenzene, xylene

EPA:

Environmental Protection Agency

EPCRA:

Emergency Planning and Community Right-to-Know Act

ID:

Inner diameter

LCL95 :

Lower 95% confidence limit

OD:

outer diameter

PDMS:

Polydimethylsiloxane

PVC:

Polyvinyl chloride

UCL95 :

Upper 95% confidence limit

VOC:

Volatile organic compound

VSS:

Volatile suspended solids

d i :

membrane inner diameter

d o :

membrane outer diameter

D a :

diffusion coefficient of toluene in air

D m :

diffusion coefficient in the membrane

D w :

diffusion coefficient of toluene in water

D S :

diffusion coefficient of toluene in biofilm

H :

Henry’s law coefficient

k :

maximum specific utilization rate

k g :

gas phase mass transfer coefficient

k l :

liquid mass transfer coefficient

k m :

membrane mass transfer coefficient

K S :

half saturation constant

K OV :

overall mass transfer coefficient

P :

permeability

P(i, j):

cylindrical coordinate position

r :

radial direction, cylindrical coordinate system

r i :

inner radius of silicone tube

r o :

outer radius of silicone tube

Re :

Reynolds number

R S :

reaction rate

S :

solubility of toluene in silicone

Sc:

Schmidt number

t :

time

v g :

gas velocity

v w :

velocity of water

V :

velocity

z :

vertical axis in cylindrical coordinate system

μ:

shear viscosity

θ:

angular direction in the cylindrical coordinate system

ρ:

density of water

References

  • American Public Health Association, American Water Works Association, and Water Environment Federation (1995) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

  • Andreoni V, Origgi G, Colombo M, Calcaterra E, Colombi A (1996) Characterization of a biofilter treating toluene contaminated air. Biodegradation 7(5):397–404

    Article  Google Scholar 

  • Arcangeli J, Arvin E (1992) Toluene biodegradation and biofilm growth in an aerobic fixed-film reactor. Appl Microbiol Biotechnol 37(4):510–517

    Article  Google Scholar 

  • Attaway H, Gooding C, Schmidt M (2001) Biodegradation of BTEX vapors in a silicone membrane bioreactor system. J Ind Microbiol Biotechnol 26:316–325

    Article  PubMed  Google Scholar 

  • Aziz CE, Fitch MW, Linquist LK, Pressman JG, Georgiou G, Speitel GE (1995) Methanotrophic biodegradation of trichloroethylene in a hollow fiber membrane bioreactor. Environ Sci Technol 29(10):2574–2538

    Article  Google Scholar 

  • Bae W, Rittmann B (1996) A structured model of dual-limitation kinetics. Biotechnol Bioeng 49:683–689

    Article  Google Scholar 

  • Baltzis BC, Wojdyla SM, Zarook SM (1997) Modeling biofiltration of VOC mixtures under steady-state conditions. J Environ Eng 123(6):599–605

    Article  Google Scholar 

  • Bird R, Stewart W, Lightfoot E (1960) Transport phenomenon. Wiley, New York

    Google Scholar 

  • Casey E, Glennon B, Hamer G (2000) Biofilm development in a membrane-aerated biofilm reactor: effect of intra-membrane oxygen pressure on performance. Bioprocess Eng 23:457–465

    Article  Google Scholar 

  • Characklis W, Marshall K (1990) Biofilms. Wiley, New York

    Google Scholar 

  • Daubert I, Lafforgue C, Fonade C, Maranges C (1999) Feasibility study of a new VOC treatment process. Presented at the Societe Francaise de Genie des European congress, pp 455–462

  • Delhomenie M, Bibeau L, Sebastien R, Brzezinski R, Heitz M (2001) Influence of nitrogen on the degradation of toluene in a compost-based biofilter. J Chem Technol Biotechnol 76(9):997–1006

    Article  Google Scholar 

  • Devinny J, Deshusses M, Webster T (1999) Biofiltration for air pollution control. Lewis Publishers, Washington

    Google Scholar 

  • Diks R, Ottengraf S, Vrijland S (1994) The existence of a biological equilibrium in a trickling biofilter for waste gas purification. Biotechnol Bioeng 44:1279–1287

    Article  Google Scholar 

  • England EC (2003) Modeling and operation of single and multiple tube membrane bioreactors. PhD Dissertation, University of Missouri-Rolla

  • Environmental Protection Agency (EPA) (2000) Latest findings on national air quality 2000. http://www.epa.gov/air/aqtrnd00/index.html, accessed on June 13, 2003

  • Environmental Protection Agency (2002) Toxic release inventory program. http://www.epa.gov/tri, accessed on June 13, 2003

  • Environmental Protection Agency (2004) Air emissions—continued progress through 2004. Air trends web page http://www.epa.gov/air/airtrends/aqtrnd04/econ-emissions.html, accessed July 17, 2005

  • Ergas S, Shumway L, Fitch M, Neemann J (1999) Membrane process for biological treatment of contaminated gas streams. Biotechnol Bioeng 63(4):431–441

    Article  PubMed  Google Scholar 

  • Fitch M (1996) Trichloroethylene degradation by methylosinus trichosporium OB3b in a hollow fiber reactor. PhD Dissertation, University of Texas

  • Fitch M, Neemann J, England E (2003) Mass transfer and benzene removal from air using latex rubber tubing and a hollow fiber membrane module. Appl Biochem Biotechnol 104(3):199–214

    Article  PubMed  Google Scholar 

  • Freitas dos Santos L, Hommerich U, Livingston A (1995) Dichloroethane removal from gas stream by an extractive membrane reactor. Biotechnol Prog 11:194–201

    Article  Google Scholar 

  • Harris N, Hansford G (1976) A study of substrate removal in a microbial film reactor. Water Res 10:935–943

    Article  Google Scholar 

  • Holden P, Hunt J, Firestone M (1997) Toluene diffusion and reaction in unsaturated Pseudomonas putida biofilms. Biotechnol Bioeng 56(6):656–670

    Article  Google Scholar 

  • Hounsell G (1995) Case studies: selection of high efficiency VOC removal technologies for process air streams. In: Proceedings of the annual meeting of air and waste management association, pp 415–422

  • Kakac S, Liu H (1998) Heat exchangers selection, rating, and thermal design. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Karamanev D, Matteau Y, Ramsay B (1999). Experimental study and mathematical modeling of gaseous toluene biofiltration by thermophilic active compost. Can J Chem Eng 77(5):1037–1043

    Article  Google Scholar 

  • Keskiner Y, Ergas S (2000) Hollow fiber membrane bioreactor for aqueous and gas phase ammonia removal by nitrification. Hazard Ind Wastes 32:867–876

    Google Scholar 

  • Kreulin H, Smolders C, Versteeg G, van Swaaij W (1997) Microporous hollow fibre membrane modulles as gas-liquid contactors. Part I. Physical mass trasfer processes. J Membrane Sci 78:197–216

    Article  Google Scholar 

  • Lugg G (1968) Diffusion coefficients of some organic and other vapors in air. Anal Chem 40:1072–1077

    Article  Google Scholar 

  • Malhautier L, Roux J, Fanlo J (2001) Biofiltration of a mixture of volatile organic emissions. J Air Waste Manage Assoc 51(12):1662–1670

    Google Scholar 

  • Metcalf & Eddy Inc. (1991) Wastewater engineering treatment, disposal, and reuse, 3rd edn. McGraw-Hill, Boston

    Google Scholar 

  • Metris A, Gerrard A, Cumming R, Weigner P, Paca J (2001) Modeling shock loadings and starvation in the biofiltration of toluene and xylene. J Chem Technol Biotechnol 76:565–572

    Article  Google Scholar 

  • Min K, Ergas S, Harrison J (2002) Hollow fiber membrane bioreactor for nitric oxide removal. Presented at the Air and Waste Management Association conference, pp 5–12

  • Mirpuri R, Jones W, Bryers JD (1997) Toluene degradation kinetics for planktonic and biofilm-grown cells of Pseudomonas putida 54G. Biotechnol Bioeng 53(6):535–546

    Article  Google Scholar 

  • Morgan-Sagastume F, Sleep B, Allen D (2001) Effects of biomass growth on gas pressure drop in biofilters. J Environ Eng 127(5):388–396

    Article  Google Scholar 

  • Mysliwiec M, VanderGheynst J, Rashid M, Schroeder E (2001) Dynamic volume-averaged model of heat and mass transport within a compost biofilter: I. Model development. Biotechnol Bioeng 73(4):282–294

    Article  PubMed  Google Scholar 

  • Neemann JJ (1998) Membrane biofiltration to remove low level volatile organic compounds. Masters Thesis, University of Missouri-Rolla

  • Nijhuis H, Mulder M, Smolders C (1991) Removal of trace organics from aqueous solutions. Effect of membrane thickness. J Membr Sci 15:99–111

    Article  Google Scholar 

  • Parvatiyar MG, Govind R, Bishop DF (1996) Biodegradation of toluene in a membrane biofilter. J Membr Sci 119:17–24

    Article  Google Scholar 

  • Patkar A, Reinhold J (1993) Novel and hybrid control systems for control of air toxic emissions. In: Proceedings of the annual meeting of the Air and Waste Management Association, pp 1–13

  • Pressman J (1995) Mass transfer of chlorinated solvents and biofouling in hollow fiber membrane modules. Masters Thesis, University of Texas

  • Pressman JG, Georgiou G, Speitel GE (2000) A hollow-fiber membrane bioreactor for the removal of trichloroethylene from the vapor phase. Biotechnol Bioeng 68(5):548–556

    Article  PubMed  Google Scholar 

  • Reij MW, Hartmans S (1996) Propene removal from synthetic waste gas using a hollow-fibre membrane bioreactor. Appl Microbiol Biotechnol 45:730–736

    Article  Google Scholar 

  • Reij MW, Keurentjes Jos TF, Hartmans S (1998) Membrane bioreactors for waste gas treatment. J Biotechnol 59(3):155–167

    Article  Google Scholar 

  • Sawyer C, McCarty P, Parkin G (1994) Chemistry for environmental engineering. McGraw-Hill, New York

    Google Scholar 

  • Schwarzenbach R, Gschwend P, Imboden D (1993) Environmental organic chemistry. Wiley, New York

    Google Scholar 

  • Smart J, Starov V, Schucker R, Lloyd D (1998) Pervaporative extraction of volatile organic compounds from aqueous systems with use of a tubular transverse flow module. Part II. Experimental results. J Membr Sci 143:159–179

    Article  Google Scholar 

  • Sun Y, Chen J (1994) Sorption/desorption properties of ethanol, toluene, and xylene in poly(dimethylsiloxane) membranes. J Appl Polym Sci 51:1797–1804

    Article  Google Scholar 

  • Tang H, Hwang S, Hwang S (1995) Dynamics of toluene degradation in biofilters. Hazard Waste Hazard Mater 12(3):207–219

    Google Scholar 

  • Van Amerongen GJ (1967) Diffusion in elastomers. Rubber Chem Technol 1065–1152

  • van Groenestijn J, Hesselink P (1994) Biotechniques for air pollution control. Biodegradation 4(4):283–301

    Article  Google Scholar 

  • Waweru M, Herrygers V, Van Langenhove H, Verstraete W (2000) Process engineering of waste gas purification. In: Klein J, Winter J (eds) Biotechnology, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  • Weast RC, Samuel SM (1997) Handbook of chemistry and physics. Cincinnati

  • Yang M, Cussler EL (1986) Designing hollow-fiber contactors. AIChE J 32(11):1910–1916

    Article  Google Scholar 

  • Yeom S, Daugulis A (2000) Development of a novel bioreactor system for treatment of gaseous benzene. Biotechnol Bioeng 72(2):156–165

    Article  Google Scholar 

  • Zahodiakin P (1995) Puzzling out the new clean air act. Chem Eng 97(12):24–27

    Google Scholar 

  • Zhang B (2000) Hollow fiber membrane biofiltration for removal of gaseous VOCs. Masters Thesis, University of Missouri-Rolla

  • Zhang Q, Cussler E (1985) Microporous hollow fibers for gas absorption II. Mass transfer across the membrane. J Membr Sci 23:333–345

    Article  Google Scholar 

Download references

Acknowledgments

This work was made possible by the highly skilled labor supplied by the University of Missouri-Rolla maintenance personnel. The authors thank Jeff Bradshaw, Bill Fredrickson, Steve Gable, and Gary Abbott for their advice and assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen England.

Rights and permissions

Reprints and permissions

About this article

Cite this article

England, E., Fitch, M.W., Mormile, M. et al. Toluene removal in membrane bioreactors under recirculating and non-recirculating liquid conditions. Clean Techn Environ Policy 7, 259–269 (2005). https://doi.org/10.1007/s10098-005-0014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-005-0014-7

Keywords

Navigation