Skip to main content
Log in

Deciphering mechanisms affecting cefepime-taniborbactam in vitro activity in carbapenemase-producing Enterobacterales and carbapenem-resistant Pseudomonas spp. isolates recovered during a surveillance study in Spain

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Purpose

To characterize the resistance mechanisms affecting the cefepime-taniborbactam combination in a collection of carbapenemase-producing Enterobacterales (CPE) and carbapenem-resistant Pseudomonas spp. (predominantly P. aeruginosa; CRPA) clinical isolates.

Methods

CPE (n = 247) and CRPA (n = 170) isolates were prospectively collected from patients admitted to 8 Spanish hospitals. Susceptibility to cefepime-taniborbactam and comparators was determined by broth microdilution. Cefepime-taniborbactam was the most active agent, inhibiting 97.6% of CPE and 67.1% of CRPA (MICs ≤ 8/4 mg/L). All isolates with cefepime-taniborbactam MIC > 8/4 mg/L (5 CPE and 52 CRPA) and a subset with MIC ≤ 8/4 mg/L (23 CPE and 24 CRPA) were characterized by whole genome sequencing.

Results

A reduced cefepime-taniborbactam activity was found in two KPC-ST307-Klebsiella pneumoniae isolates with altered porins [KPC-62-K. pneumoniae (OmpA, OmpR/EnvZ), KPC-150-K. pneumoniae (OmpK35, OmpK36)] and one each ST133-VIM-1-Enterobacter hormaechei with altered OmpD, OmpR, and OmpC; IMP-8-ST24-Enterobacter asburiae; and NDM-5-Escherichia coli with an YRIN-inserted PBP3 and a mutated PBP2. Among the P. aeruginosa (68/76), elevated cefepime-taniborbactam MICs were mostly associated with GES-5-ST235, OXA-2+VIM-2-ST235, and OXA-2+VIM-20-ST175 isolates also carrying mutations in PBP3, efflux pump (mexR, mexZ) and AmpC (mpl) regulators, and non-carbapenemase-ST175 isolates with AmpD-T139M and PBP3-R504C mutations. Overall, accumulation of these mutations was frequently detected among non-carbapenemase producers.

Conclusions

The reduced cefepime-taniborbactam activity among the minority of isolates with elevated cefepime-taniborbactam MICs is not only due to IMP carbapenemases but also to the accumulation of multiple resistance mechanisms, including PBP and porin mutations in CPE and chromosomal mutations leading to efflux pumps up-regulation, AmpC overexpression, and PBP modifications in P. aeruginosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The sequences generated in this project were submitted to the European Nucleotide Archive under the study accession number PRJNA985214.

References

  1. Nordmann P, Naas T, Poirel L (2011) Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3310682&tool=pmcentrez&rendertype=abstract10.3201/eid1710.110655

  2. Horcajada JP, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S et al (2019) Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 32:1–52. https://doi.org/10.1128/CMR.00031-19

    Article  Google Scholar 

  3. Botelho J, Grosso F, Peixe L (2019) Antibiotic resistance in Pseudomonas aeruginosa – mechanisms, epidemiology and evolution. Drug Resist Updat 44:26–47. https://doi.org/10.1016/j.drup.2019.07.002

    Article  Google Scholar 

  4. Yahav D, Giske CG, Gramatniece A, Abodakpi H, Tam VH, Leibovici L (2021) New β-lactam–β-lactamase inhibitor combinations. Clin Microbiol Rev 1(34):1–61. https://doi.org/10.1128/CMR.00115-20

    Article  Google Scholar 

  5. Vázquez-Ucha JC, Arca-Suárez J, Bou G, Beceiro A (2020) New carbapenemase inhibitors: clearing the way for the β-lactams. Int J Mol Sci 1(21):9308. https://doi.org/10.3390/ijms21239308

    Article  CAS  Google Scholar 

  6. Liu B, Trout REL, Chu GH, Mcgarry D, Jackson RW, Hamrick JC et al (2020) Discovery of taniborbactam (VNRX-5133): a broad-spectrum serine- and metallo-β-lactamase inhibitor for carbapenem-resistant bacterial infections. J Med Chem 26(63):2789–2801. https://doi.org/10.1021/acs.jmedchem.9b01518

    Article  CAS  Google Scholar 

  7. Hamrick JC, Docquier J-D, Uehara T, Myers CL, Six DA, Chatwin CL et al (2020) VNRX-5133 (Taniborbactam), a broad-spectrum inhibitor of serine-and metallo-lactamases, restores activity of cefepime in Enterobacterales and Pseudomonas aeruginosa. Antimicrob Agents Chemother 64:e01963–e01919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Krajnc A, Brem J, Hinchliffe P, Calvopiña K, Panduwawala TD, Lang PA et al (2019) Bicyclic boronate VNRX-5133 inhibits metallo- and serine-β-lactamases. J Med Chem 26(62):8544–8556. https://doi.org/10.1021/acs.jmedchem.9b00911

    Article  CAS  Google Scholar 

  9. Hernández-García M, García-Castillo M, Ruiz-Garbajosa P, Bou G, Siller-Ruiz M, Pitart C, Gracia-Ahufinger I et al (2022) In vitro activity of cefepime-taniborbactam against carbapenemase-producing Enterobacterales and Pseudomonas aeruginosa isolates recovered in Spain. Antimicrob Agents Chemother 66(3):e0216121. https://doi.org/10.1128/aac.02161-21

  10. Hernández-García M, García-Castillo M, García-Fernández S, Melo-Cristino J, Pinto MF, Goncalves E et al (2020) Distinct epidemiology and resistance mechanisms affecting ceftolozane / tazobactam in Pseudomonas aeruginosa isolates recovered from ICU patients in Spain and Portugal depicted by WGS. J Antimicrob Chemother 1–10. https://doi.org/10.1093/jac/dkaa430

  11. Hernández-García M, García-fernández S, García-castillo M, Melo-Cristino J, Pinto MF, Goncalves E et al (2020) Confronting ceftolozane-tazobactam susceptibility in multidrug-resistant Enterobacterales isolates and whole-genome sequencing results (STEP study). Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2020.106259

  12. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S et al (2016) Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol 17:1–14. https://doi.org/10.1186/s13059-016-0997-x

    Article  CAS  Google Scholar 

  13. Beghain J, Bridier-Nahmias A, Le NH, Denamur E, Clermont O (2018) ClermonTyping: an easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb Genom 4:1–8. https://doi.org/10.1099/mgen.0.000192

    Article  Google Scholar 

  14. Lam MMC, Wick RR, Watts SC, Cerdeira LT, Wyres KL, Holt KE (2021) A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun 12:4188. https://doi.org/10.1038/s41467-021-24448-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zankari E, Allesøe R, Joensen KG, Cavaco LM, Lund O, Aarestrup FM (2017) PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J Antimicrob Chemother 72:2764–2768. https://doi.org/10.1093/jac/dkx217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL et al (2018) Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. https://doi.org/10.1016/S1473-3099(17)30753-3

    Article  PubMed  Google Scholar 

  17. Karlowsky JA, Hackel MA, Wise MG, Six DA, Uehara T, Daigle DM et al (2023) In vitro activity of cefepime-taniborbactam and comparators against clinical isolates of gram-negative bacilli from 2018 to 2020: results from the Global Evaluation of Antimicrobial Resistance via Surveillance (GEARS) Program. Antimicrob Agents Chemother 1:67. https://doi.org/10.1128/aac.01281-22

    Article  CAS  Google Scholar 

  18. Shields RK, Chen L, Cheng S, Chavda KD, Press EG (2016) Emergence of ceftazidime-avibactam resistance fue to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother 61:1–11. https://doi.org/10.1128/AAC.02097-16

    Article  Google Scholar 

  19. Bianco G, Boattini M, Comini S, Iannaccone M, Bondi A, Cavallo R et al (2022) In vitro activity of cefiderocol against ceftazidime-avibactam susceptible and resistant KPC-producing Enterobacterales: cross-resistance and synergistic effects. Eur J Clin Microbiol Infect Dis 1(41):63–70. https://doi.org/10.1007/s10096-021-04341-z

    Article  CAS  Google Scholar 

  20. Daigle D, Hamrick J, Chatwin C, Kurepina N, Kreiswirth BN, Shields RK, Oliver A, Clancy CJ, Nguyen MH, Pevear D, Xerri L (2018) Cefepime/VNRX-5133 broad-spectrum activity is maintained against emerging KPC- and PDC-variants in multidrug-resistant K. pneumoniae and P. aeruginosa. Open Forum Infect Dis Ther 5(Suppl):1

    Google Scholar 

  21. Castillo-Polo JA, Hernández-García M, Morosini MI, Pérez-Viso B, Soriano C, De Pablo R et al (2023) Outbreak by KPC-62-producing ST307 Klebsiella pneumoniae isolates resistant to ceftazidime/avibactam and cefiderocol in a university hospital in Madrid, Spain. J Antimicrob Chemother 25. https://doi.org/10.1093/jac/dkad086

  22. Satapoomin N, Dulyayangkul P, Avison MB (2022) Klebsiella pneumoniae mutants resistant to ceftazidime- avibactam plus aztreonam, imipenem-relebactam, meropenem-vaborbactam, and cefepime-taniborbactam. Antimicrob Agents Chemother 1:66. https://doi.org/10.1128/aac.02179-21

    Article  CAS  Google Scholar 

  23. Alm RA, Johnstone MR, Lahiri SD (2014) Characterization of Escherichia coli NDM isolates with decreased susceptibility to aztreonam/avibactam: Role of a novel insertion in PBP3. J Antimicrob Chemother 20(70):1420–1428. https://doi.org/10.1093/jac/dku568

    Article  CAS  Google Scholar 

  24. Sato T, Ito A, Ishioka Y, Matsumoto S, Rokushima M, Kazmierczak KM et al (2020) Escherichia coli strains possessing a four amino acid YRIN insertion in PBP3 identified as part of the SIDERO-WT-2014 surveillance study. JAC Antimicrob Resist 1:2. https://doi.org/10.1093/jacamr/dlaa081

    Article  Google Scholar 

  25. Wang X, Zhao C, Wang Q, Wang Z, Liang X, Zhang F et al (2020) In vitro activity of the novel β-lactamase inhibitor taniborbactam (VNRX-5133), in combination with cefepime or meropenem, against MDR Gram-negative bacterial isolates from China. J Antimicrob Chemother 1(75):1850–1858. https://doi.org/10.1093/jac/dkaa053

    Article  CAS  Google Scholar 

  26. Ranjitkar S, Reck F, Ke X, Zhu Q, McEnroe G, Lopez SL et al (2019) Identification of mutations in the mrdA gene encoding PBP2 that reduce carbapenem and diazabicyclooctane susceptibility of Escherichia coli clinical isolates with mutations in ftsI (PBP3) and which carry blaNDM-1. mSphere 28:4. https://doi.org/10.1128/msphere.00074-19

    Article  CAS  Google Scholar 

  27. Vázquez-Ucha JC, Lasarte-Monterrubio C, Guijarro-Sánchez P, Oviaño M, Álvarez-Fraga L, Alonso-García I et al (2022) Assessment of activity and resistance mechanisms to cefepime in combination with the novel β-lactamase inhibitors zidebactam, taniborbactam, and enmetazobactam against a multicenter collection of carbapenemase-producing Enterobacterales. Antimicrob Agents Chemother 1:66. https://doi.org/10.1128/AAC.01676-21

    Article  Google Scholar 

  28. Le Terrier C, Nordmann P, Sadek M, Poirel L (2023) In vitro activity of cefepime/zidebactam and cefepime/taniborbactam against aztreonam/avibactam-resistant NDM-like-producing Escherichia coli clinical isolates. J Antimicrob Chemother 1(78):1191–1194. https://doi.org/10.1093/jac/dkad061

    Article  CAS  Google Scholar 

  29. Golden AR, Baxter MR, Karlowsky JA, Mataseje L, Mulvey MR, Walkty A et al (2022) Activity of cefepime/taniborbactam and comparators against whole genome sequenced ertapenem-non-susceptible Enterobacterales clinical isolates: CANWARD 2007-19. JAC Antimicrob Resist 1:4. https://doi.org/10.1093/jacamr/dlab197

    Article  Google Scholar 

  30. Le Terrier C, Nordmann P, Freret C, Seigneur M, Poirel L (2023) Impact of acquired broad spectrum b-lactamases on susceptibility to novel combinations made of β-lactams (aztreonam, cefepime, meropenem, and imipenem) and novel β-lactamase inhibitors in Escherichia coli and Pseudomonas aeruginosa. Antimicrob Agents Chemother 1:67. https://doi.org/10.1128/aac.00339-23

    Article  CAS  Google Scholar 

  31. Lasarte-Monterrubio C, Fraile-Ribot PA, Vázquez-Ucha JC, Cabot G, Guijarro-Sánchez P, Alonso-García I et al (2022) Activity of cefiderocol, imipenem/relebactam, cefepime/taniborbactam and cefepime/zidebactam against ceftolozane/tazobactam- and ceftazidime/avibactam-resistant Pseudomonas aeruginosa. J Antimicrob Chemother 1(77):2809–2815. https://doi.org/10.1093/jac/dkac241

    Article  CAS  Google Scholar 

  32. Pérez-Vázquez M, Sola-Campoy PJ, Zurita ÁM, Ávila A, Gómez-Bertomeu F, Solís S et al (2020) Carbapenemase-producing Pseudomonas aeruginosa in Spain: interregional dissemination of the high-risk clones ST175 and ST244 carrying blaVIM-2, blaVIM-1, blaIMP-8, blaVIM-20 and blaKPC-2. Int J Antimicrob Agents 1(56). https://doi.org/10.1016/j.ijantimicag.2020.106026

  33. Hernández-García M, García-Castillo M, Melo-Cristino J, Pinto MF, Gonçalves E, Alves V et al (2022) In vitro activity of imipenem/relebactam against Pseudomonas aeruginosa isolates recovered from ICU patients in Spain and Portugal (SUPERIOR and STEP studies). J Antimicrob Chemother 1(77):3163–3172. https://doi.org/10.1093/jac/dkac298

    Article  CAS  Google Scholar 

  34. López-Causapé C, Cabot G, del Barrio-Tofiño E, Oliver A (2018) The versatile mutational resistome of Pseudomonas aeruginosa. Front Microbiol 6:9. https://doi.org/10.3389/fmicb.2018.00685

    Article  Google Scholar 

Download references

Acknowledgements

The study group includes the following members: Germán Bou and M. Carmen Fernández, Hospital Universitario A Coruña, A Coruña, Spain; Jorge Calvo, Jesús Rodríguez-Lozano, and María Siller-Ruiz, Hospital Universitario Marqués de Valdecilla, Santander, Spain; Jordi Vila and Cristina Pitart, Hospital Clínic i Provincial, Barcelona, Spain; Luis Martínez-Martínez and Irene Gracia-Ahufinger, Hospital Universitario Reina Sofía, Córdoba, Spain; Antonio Oliver and Xavier Mulet, Hospital Universitario Son Espases, Palma de Mallorca, Spain; Álvaro Pascual and Elena Marín-Martínez, Hospital Universitario Virgen Macarena, Sevilla, Spain; Concepción Gimeno and Nuria Tormo, Consorcio Hospital General Universitario de Valencia, Valencia, Spain; Marta Hernández-García, María García del Castillo, Patricia Ruiz-Garbajosa, Marta Nieto-Torres, and Rafael Cantón, Hospital Ramón y Cajal, Madrid, Spain.

Funding

This study was also supported by Plan Nacional de I + D + i 2013–2016 and Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Economía, Industria y Competitividad, Spanish Network for Research in Infectious Diseases [RD16/0016/0001, RD16/0016/0004, RD16/0016/0006, RD16/0016/0007, RD16/0016/0008, RD16/0016/0010, and REIPI RD16/0016/0011], CIBER de Enfermedades Infecciosas (CIBERINFEC) (CB21/13/00084), and co-financed by the European Development Regional Fund “A way to achieve Europe” (ERDF), Operative program Intelligent Growth 2014–2020. MH-G is supported by a postdoctoral contract by CIBERINFEC (CB21/13/00084).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marta Hernández-García or Rafael Cantón.

Ethics declarations

Ethics approval

The ethics committees of Ramón y Cajal University hospital approved the study (Ref. 038-20).

Conflict of interest

RC has participated in educational programs organized by MSD, Pfizer, and Shionogi, and has received research support from MSD and Venatorx Pharmaceuticals, Inc. Other authors do not declare conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 304 kb)

ESM 2

(XLS 219 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-García, M., García-Castillo, M., Nieto-Torres, M. et al. Deciphering mechanisms affecting cefepime-taniborbactam in vitro activity in carbapenemase-producing Enterobacterales and carbapenem-resistant Pseudomonas spp. isolates recovered during a surveillance study in Spain. Eur J Clin Microbiol Infect Dis 43, 279–296 (2024). https://doi.org/10.1007/s10096-023-04697-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-023-04697-4

Keywords

Navigation