Skip to main content
Log in

Ceftazidime-avibactam: are we safe from class A carbapenemase producers’ infections?

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

Recently, new combinations of β-lactams and β-lactamase inhibitors became available, including ceftazidime-avibactam, and increased the ability to treat infections caused by carbapenem-resistant Enterobacterales (CRE). Despite the reduced time of clinical use, isolates expressing resistance to ceftazidime-avibactam have been reported, even during treatment or in patients with no previous contact with this drug. Here, we detailed review data on global ceftazidime-avibactam susceptibility, the mechanisms involved in resistance, and the molecular epidemiology of resistant isolates. Ceftazidime-avibactam susceptibility remains high (≥ 98.4%) among Enterobacterales worldwide, being lower among extended-spectrum β-lactamase (ESBL) producers and CRE. Alterations in class A β-lactamases are the major mechanism involved in ceftazidime-avibactam resistance, and mutations are mainly, but not exclusively, located in the Ω loop of these enzymes. Modifications in Klebsiella pneumoniae carbapenemase (KPC) 3 and KPC-2 have been observed by many authors, generating variants with different mutations, insertions, and/or deletions. Among these, the most commonly described is Asp179Tyr, both in KPC-3 (KPC-31 variant) and in KPC-2 (KPC-33 variant). Changes in membrane permeability and overexpression of efflux systems may also be associated with ceftazidime-avibactam resistance. Although several clones have been reported, ST258 with Asp179Tyr deserves special attention. Surveillance studies and rationale use are essential to retaining the activity of this and other antimicrobials against class A CRE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code Availability

Not applicable.

References

  • Aktaş Z, Kayacan C, Oncul O (2012) In vitro activity of avibactam (NXL104) in combination with β-lactams against Gram-negative bacteria, including OXA-48 β-lactamase-producing Klebsiella pneumoniae. Int J Antimicrob Agents 39:86–89. https://doi.org/10.1016/j.ijantimicag.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  • Antinori E, Unali I, Bertoncelli A, Mazzariol A (2020) Klebsiella pneumoniae carbapenemase (KPC) producer resistant to ceftazidime–avibactam due to a deletion in the blaKPC3 gene. Clin Microbiol Infect 26:946.e1. https://doi.org/10.1016/j.cmi.2020.02.007

    Article  CAS  Google Scholar 

  • Antonelli A, Giani T, Di Pilato V et al (2019) KPC-31 expressed in a ceftazidime/avibactam-resistant Klebsiella pneumoniae is associated with relevant detection issues. J Antimicrob Chemother 74:2464–2466. https://doi.org/10.1093/jac/dkz156

    Article  CAS  PubMed  Google Scholar 

  • Appel TM, Mojica MF, De La Cadena E et al (2020) In vitro susceptibility to ceftazidime/avibactam and comparators in clinical isolates of Enterobacterales from five Latin American countries. Antibiotics (2079–6382) 9:62. https://doi.org/10.3390/antibiotics9020062

  • Barnes MD, Winkler ML, Taracila MA et al (2017) Klebsiella pneumoniae carbapenemase-2 (KPC-2), substitutions at ambler position Asp179, and resistance to ceftazidime-avibactam: unique antibiotic-resistant phenotypes emerge from β-lactamase protein engineering. mBio 8:e00528–17, /mbio/8/5/e00528–17.atom. https://doi.org/10.1128/mBio.00528-17

  • Benchetrit L, Mathy V, Armand-Lefevre L et al (2020) Successful treatment of septic shock due to NDM-1-producing Klebsiella pneumoniae using ceftazidime/avibactam combined with aztreonam in solid organ transplant recipients: report of two cases. Int J Antimicrob Agents 55:105842. https://doi.org/10.1016/j.ijantimicag.2019.10.023

    Article  CAS  PubMed  Google Scholar 

  • Bianco G, Boattini M, Iannaccone M et al (2020) Bloodstream infection by two subpopulations of Klebsiella pneumoniae ST1685 carrying KPC-33 or KPC-14 following ceftazidime/avibactam treatment: considerations regarding acquired heteroresistance and choice of carbapenemase detection assay. J Antimicrob Chemother 75:3075–3076. https://doi.org/10.1093/jac/dkaa283

    Article  CAS  PubMed  Google Scholar 

  • Both A, Büttner H, Huang J et al (2017) Emergence of ceftazidime/avibactam non-susceptibility in an MDR Klebsiella pneumoniae isolate. J Antimicrob Chemother 72:2483. https://doi.org/10.1093/jac/dkx179

  • Cano Á, Guzmán-Puche J, García-Gutiérrez M et al (2020) Use of carbapenems in the combined treatment of emerging ceftazidime/avibactam-resistant and carbapenem-susceptible KPC-producing Klebsiella pneumoniae infections: Report of a case and review of the literature. J Glob Antimicrob Resist 22:9–12. https://doi.org/10.1016/j.jgar.2019.11.007

    Article  PubMed  Google Scholar 

  • Carpenter J, Neidig N, Campbell A et al (2019) Activity of imipenem/relebactam against carbapenemase-producing Enterobacteriaceae with high colistin resistance. J Antimicrob Chemother 74:3260–3263. https://doi.org/10.1093/jac/dkz354

    Article  CAS  PubMed  Google Scholar 

  • Castanheira M, Arends SJR, Davis AP et al (2018) Analyses of a ceftazidime-avibactam-resistant Citrobacter freundii isolate carrying bla KPC-2 reveals a heterogenous population and reversible genotype. mSphere 3:e00408–18, /msphere/3/5/mSphere408–18.atom. https://doi.org/10.1128/mSphere.00408-18

  • Castanheira M, Doyle TB, Hubler C et al (2020) Ceftazidime-avibactam activity against a challenge set of carbapenem-resistant Enterobacterales: Ompk36 L3 alterations and β-lactamases with ceftazidime hydrolytic activity lead to elevated MIC values Int J Antimicrob Agents 56. https://doi.org/10.1016/j.ijantimicag.2020.106011

  • Castanheira M, Doyle TB, Mendes RE, Sader HS (2019) Comparative activities of ceftazidime-avibactam and ceftolozane-tazobactam against Enterobacteriaceae isolates producing extended-spectrum β-lactamases from U.S. hospitals. Antimicrob Agents Chemother 63:e00160–19, /aac/63/7/AAC.00160–19.atom. https://doi.org/10.1128/AAC.00160-19

  • Castanheira M, Mendes RE, Jones RN, Sader HS (2016) Changes in the frequencies of β-lactamase genes among Enterobacteriaceae isolates in U.S. hospitals, 2012 to 2014: activity of ceftazidime-avibactam tested against β-lactamase-producing isolates. Antimicrob Agents Chemother 60:4770–4777. https://doi.org/10.1128/AAC.00540-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castanheira M, Mendes RE, Sader HS (2017a) Low frequency of ceftazidime-avibactam resistance among Enterobacteriaceae isolates carrying bla KPC collected in U.S. hospitals from 2012 to 2015. Antimicrob Agents Chemother 61:e02369–e2416. https://doi.org/10.1128/AAC.02369-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castanheira M, Mendes RE, Sader HS (2017b) Low frequency of ceftazidime-avibactam resistance among Enterobacteriaceae isolates carrying blaKPC collected in U.S. hospitals from 2012 to 2015. Antimicrob Agents Chemother 61:e02369–16. https://doi.org/10.1128/AAC.02369-16

  • Castanheira M, Mills JC, Costello SE et al (2015) Ceftazidime-avibactam activity tested against Enterobacteriaceae isolates from U.S. hospitals (2011 to 2013) and characterization of β-lactamase-producing strains. Antimicrob Agents Chemother 59:3509–3517. https://doi.org/10.1128/AAC.00163-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clinical and Laboratory Standards Institute (2020) Performance Standards for Standards for Antimicrobial Susceptibility Testing; 30th Informational Supplement. CLSI document M100-S30. Wayne, PA

  • Compain F, Arthur M (2017) Impaired inhibition by avibactam and resistance to the ceftazidime-avibactam combination due to the D179Y substitution in the KPC-2 β-lactamase. Antimicrob Agents Chemother 61:e00451–e517. https://doi.org/10.1128/AAC.00451-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compain F, Dorchène D, Arthur M (2018) Combination of amino acid substitutions leading to CTX-M-15-mediated resistance to the ceftazidime-avibactam combination. Antimicrob Agents Chemother 62:e00357–18. https://doi.org/10.1128/AAC.00357-18

  • Cui X, Shan B, Zhang X et al (2020) Reduced ceftazidime-avibactam susceptibility in KPC-producing Klebsiella pneumoniae from patients without ceftazidime-avibactam use history – a multicenter study in China. Front Microbiol 11:1–9. https://doi.org/10.3389/fmicb.2020.01365

  • Cui X, Zhang H, Du H (2019) Carbapenemases in Enterobacteriaceae: detection and antimicrobial therapy. Front Microbiol 10:1823. https://doi.org/10.3389/fmicb.2019.01823

    Article  PubMed  PubMed Central  Google Scholar 

  • Davido B, Fellous L, Lawrence C et al (2017) Ceftazidime-avibactam and aztreonam, an interesting strategy to overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 61. https://doi.org/10.1128/AAC.01008-17

  • de Jonge BLM, Karlowsky JA, Kazmierczak KM et al (2016) In vitro susceptibility to ceftazidime-avibactam of carbapenem-nonsusceptible Enterobacteriaceae isolates collected during the INFORM Global Surveillance Study (2012 to 2014). Antimicrob Agents Chemother 60:3163–3169. https://doi.org/10.1128/AAC.03042-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denisuik AJ, Karlowsky JA, Denisuik T et al (2015) In vitro activity of ceftazidime-avibactam against 338 molecularly characterized gentamicin-nonsusceptible Gram-negative clinical isolates obtained from patients in Canadian hospitals. Antimicrob Agents Chemother 59:3623–3626. https://doi.org/10.1128/AAC.00364-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobias J, Dénervaud-Tendon V, Poirel L, Nordmann P (2017) Activity of the novel siderophore cephalosporin cefiderocol against multidrug-resistant Gram-negative pathogens. Eur J Clin Microbiol Infect Dis 36:2319–2327. https://doi.org/10.1007/s10096-017-3063-z

    Article  CAS  PubMed  Google Scholar 

  • Dupont H, Gaillot O, Goetgheluck AS et al (2016) Molecular characterization of carbapenem-nonsusceptible enterobacterial isolates collected during a prospective interregional survey in France and susceptibility to the novel ceftazidime-avibactam and aztreonam-avibactam combinations. Antimicrob Agents Chemother 60:215–221. https://doi.org/10.1128/AAC.01559-15

    Article  CAS  PubMed  Google Scholar 

  • European Medicines Agency (2016) European public assessment report: Zavicefta (ceftazidime/avibactam). https://www.ema.europa.eu/

  • Falcone M, Daikos GL, Tiseo G et al (2020) Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase–producing Enterobacterales. Clin Infect Dis 72(11):1871-1878. https://doi.org/10.1093/cid/ciaa586

  • Falcone M, Paterson D (2016) Spotlight on ceftazidime/avibactam: a new option for MDR Gram-negative infections. J Antimicrob Chemother 71:2713–2722. https://doi.org/10.1093/jac/dkw239

    Article  CAS  PubMed  Google Scholar 

  • Flamm RK, Nichols WW, Sader HS et al (2016) In vitro activity of ceftazidime/avibactam against Gram-negative pathogens isolated from pneumonia in hospitalised patients, including ventilated patients. Int J Antimicrob Agents 47:235–242. https://doi.org/10.1016/j.ijantimicag.2016.01.004

  • Food and Drug Administration (2015) Drug approval package: AVYCAZ (ceftazidime-avibactam) injection. https://www.accessdata.fda.gov/. Accessed 4 Sep 2019

  • Frère JM, Bogaerts P, Huang TD et al (2020) Interactions between avibactam and ceftazidime-hydrolyzing Class D β-lactamases. Biomolecules 10:483. https://doi.org/10.3390/biom10030483

    Article  CAS  PubMed Central  Google Scholar 

  • Gaibani P, Campoli C, Lewis RE et al (2018) In vivo evolution of resistant subpopulations of KPC-producing Klebsiella pneumoniae during ceftazidime/avibactam treatment. J Antimicrob Chemother 73:1525–1529. https://doi.org/10.1093/jac/dky082

    Article  CAS  PubMed  Google Scholar 

  • Gaibani P, Re MC, Campoli C et al (2020) Bloodstream infection caused by KPC-producing Klebsiella pneumoniae resistant to ceftazidime/avibactam: epidemiology and genomic characterization. Clin Microbiol Infect 26:516. https://doi.org/10.1016/j.cmi.2019.11.011

    Article  CAS  Google Scholar 

  • Galani I, Antoniadou A, Karaiskos I et al (2019a) Genomic characterization of a KPC-23-producing Klebsiella pneumoniae ST258 clinical isolate resistant to ceftazidime-avibactam. Clin Microbiol Infect 25:763. https://doi.org/10.1016/j.cmi.2019.03.011

    Article  CAS  Google Scholar 

  • Galani I, Karaiskos I, Angelidis E et al (2020a) Emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in KPC-2-producing Klebsiella pneumoniae of sequence type 39 during treatment. Eur J Clin Microbiol Infect Dis 40(1):219-224. https://doi.org/10.1007/s10096-020-04000-9

  • Galani I, Karaiskos I, Souli M et al (2020b) Outbreak of KPC-2-producing Klebsiella pneumoniae endowed with ceftazidime-avibactam resistance mediated through a VEB-1-mutant (VEB-25), Greece, September to October 2019. Euro Surveill (15607917) 25:10–16. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000028

  • Galani I, On Behalf Of The Study Collaborators, Souli M et al (2019b) In vitro activity of imipenem-relebactam against non-MBL carbapenemase-producing Klebsiella pneumoniae isolated in Greek hospitals in 2015–2016. Eur J Clin Microbiol Infect Dis 38:1143–1150. https://doi.org/10.1007/s10096-019-03517-y

  • Gao H, Liu Y, Wang R et al (2020) The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. EBioMedicine 51:102599. https://doi.org/10.1016/j.ebiom.2019.102599

    Article  PubMed  PubMed Central  Google Scholar 

  • García J, Nastro M, Cejas D et al (2020) Emergence of ceftazidime/avibactam resistance in KPC-8–producing Klebsiella pneumoniae in South America. Clin Microbiol Infect 26:1264–1265. https://doi.org/10.1016/j.cmi.2020.03.013

  • García-Castillo M, Oviaño M, Rodríguez JG et al (2018) Activity of ceftazidime-avibactam against carbapenemase-producing Enterobacteriaceae from urine specimens obtained during the infection-carbapenem resistance evaluation surveillance trial (iCREST) in Spain. Int J Antimicrob Agents 51:511–515. https://doi.org/10.1016/j.ijantimicag.2018.01.011

  • Giani T, Antonelli A, Sennati S et al (2020) Results of the Italian infection-Carbapenem Resistance Evaluation Surveillance Trial (iCREST-IT): activity of ceftazidime/avibactam against Enterobacterales isolated from urine. J Antimicrob Chemother 75:979–983. https://doi.org/10.1093/jac/dkz547

  • Giddins MJ, Macesic N, Annavajhala MK et al (2017) Successive emergence of ceftazidime-avibactam resistance through distinct genomic adaptations in bla KPC-2-harboring Klebsiella pneumoniae sequence type 307 isolates. Antimicrob Agents Chemother 62:e02101–17. https://doi.org/10.1128/AAC.02101-17

  • Golden AR, Adam HJ, Baxter M et al (2020) In vitro activity of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacilli isolated from patients in Canadian intensive care units. Diagn Microbiol Infect Dis 97:115012. https://doi.org/10.1016/j.diagmicrobio.2020.115012

    Article  CAS  PubMed  Google Scholar 

  • Göttig S, Frank D, Mungo E et al (2019) Emergence of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae in vivo. J Antimicrob Chemother 74:3211–3216. https://doi.org/10.1093/jac/dkz330

    Article  CAS  PubMed  Google Scholar 

  • Hachem R, Reitzel R, Rolston K et al (2017) Antimicrobial activities of ceftazidime-avibactam and comparator agents against clinical bacteria isolated from patients with cancer. Antimicrob Agents Chemother 61(e02106–16):e02106-e2116. https://doi.org/10.1128/AAC.02106-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackel M, Kazmierczak KM, Hoban DJ et al (2016) Assessment of the in vitro activity of ceftazidime-avibactam against multidrug-resistant Klebsiella spp. collected in the INFORM Global Surveillance Study, 2012 to 2014. Antimicrob Agents Chemother 60:4677–4683. https://doi.org/10.1128/AAC.02841-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemarajata P, Humphries RM (2019) Ceftazidime/avibactam resistance associated with L169P mutation in the omega loop of KPC-2. J Antimicrob Chemother 74:1241–1243. https://doi.org/10.1093/jac/dkz026

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo-Grass C, Warburg G, Temper V et al (2012) KPC-9, a Novel Carbapenemase from Clinical Specimens in Israel. Antimicrob Agents Chemother 56:6057–6059. https://doi.org/10.1128/AAC.01156-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch EB, Brigman HV, Zucchi PC et al (2020) Ceftolozane-tazobactam and ceftazidime-avibactam activity against β-lactam-resistant Pseudomonas aeruginosa and extended-spectrum β-lactamase-producing Enterobacterales clinical isolates from U.S. medical centres. J Glob Antimicrob Resist 22:689–694. https://doi.org/10.1016/j.jgar.2020.04.017

  • Ho S, Nguyen L, Trinh T, MacDougall C (2019) Recognizing and overcoming resistance to new beta-lactam/beta-lactamase inhibitor combinations. Curr Infect Dis Rep 21:39. https://doi.org/10.1007/s11908-019-0690-9

    Article  PubMed  Google Scholar 

  • Hobson CA, Bonacorsi S, Fahd M et al (2018) Successful treatment of bacteremia due to NDM-1-producing Morganella morganii with aztreonam and ceftazidime-avibactam combination in a pediatric patient with hematologic malignancy. Antimicrob Agents Chemother 63:e02463–e2518. https://doi.org/10.1128/AAC.02463-18

    Article  Google Scholar 

  • Humphries RM, Hemarajata P (2017) Resistance to ceftazidime-avibactam in Klebsiella pneumoniae due to porin mutations and the increased expression of KPC-3. Antimicrob Agents Chemother 61:e00537–e617. https://doi.org/10.1128/AAC.00537-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Humphries RM, Yang S, Hemarajata P et al (2015) First report of ceftazidime-avibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob Agents Chemother 59:6605–6607. https://doi.org/10.1128/AAC.01165-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jean SS, Lu MC, Shi ZY et al (2018) In vitro activity of ceftazidime–avibactam, ceftolozane–tazobactam, and other comparable agents against clinically important Gram-negative bacilli: results from the 2017 Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART). Infect Drug Resist 11:1983–1992. https://doi.org/10.2147/IDR.S175679

  • Karlowsky JA, Biedenbach DJ, Kazmierczak KM et al (2016) Activity of ceftazidime-avibactam against extended-spectrum- and AmpC β-lactamase-producing Enterobacteriaceae collected in the INFORM Global Surveillance Study from 2012 to 2014. Antimicrob Agents Chemother 60:2849–2857. https://doi.org/10.1128/AAC.02286-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlowsky JA, Kazmierczak KM, Bouchillon SK et al (2018) In vitro activity of ceftazidime-avibactam against clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa collected in Asia-Pacific countries: results from the INFORM Global Surveillance Program, 2012 to 2015. Antimicrob Agents Chemother 62:e02569–17. https://doi.org/10.1128/AAC.02569-17

  • Kazmierczak KM, Biedenbach DJ, Hackel M et al (2016) Global dissemination of bla KPC into bacterial species beyond Klebsiella pneumoniae and in vitro susceptibility to ceftazidime-avibactam and aztreonam-avibactam. Antimicrob Agents Chemother 60:4490–4500. https://doi.org/10.1128/AAC.00107-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazmierczak KM, Bradford PA, Stone GG et al (2018a) In vitro activity of ceftazidime-avibactam and aztreonam-avibactam against OXA-48-carrying Enterobacteriaceae isolated as part of the International Network for Optimal Resistance Monitoring (INFORM) Global Surveillance Program from 2012 to 2015. Antimicrob Agents Chemother 62:e00592–18. https://doi.org/10.1128/AAC.00592-18

  • Kazmierczak KM, Jonge BLM de, Stone GG et al (2018b) In vitro activity of ceftazidime/avibactam against isolates of Enterobacteriaceae collected in European countries: INFORM global surveillance 2012–15. J Antimicrob Chemother (JAC) 73:2782–2788. https://doi.org/10.1093/jac/dky266

  • Ko WC, Stone GG (2020) In vitro activity of ceftazidime–avibactam and comparators against Gram-negative bacterial isolates collected in the Asia-Pacific region as part of the INFORM program (2015–2017). Ann Clin Microbiol Antimicrob 19. https://doi.org/10.1186/s12941-020-00355-1

  • Kresken M, Korte-Berwanger M, Gatermann SG et al (2020) In vitro activity of cefiderocol against aerobic Gram-negative bacterial pathogens from Germany. Int J Antimicrob Agents 56:106128. https://doi.org/10.1016/j.ijantimicag.2020.106128

    Article  CAS  PubMed  Google Scholar 

  • Li D, Liao W, Huang H et al (2020) Emergence of hypervirulent ceftazidime/avibactam-resistant Klebsiella pneumoniae isolates in a Chinese tertiary hospital. Infect Drug Resist 13:2673–2680. https://doi.org/10.2147/IDR.S257477

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao CH, Lee NY, Tang HJ et al (2019) Antimicrobial activities of ceftazidime–avibactam, ceftolozane–tazobactam, and other agents against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa isolated from intensive care units in Taiwan: results from the Surveillance of Multicenter Antimicrobial Resistance in Taiwan in 2016. Infect Drug Resist 12:545–552. https://doi.org/10.2147/IDR.S193638

  • Liu X, Zhang J, Li Y et al (2019) Diversity and frequency of resistance and virulence genes in blaKPC and blaNDM co-producing Klebsiella pneumoniae strains from China. Infect Drug Resist 12:2819–2826. https://doi.org/10.2147/IDR.S214960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livermore DM, Mushtaq S, Doumith M et al (2018) Selection of mutants with resistance or diminished susceptibility to ceftazidime/avibactam from ESBL- and AmpC-producing Enterobacteriaceae. J Antimicrob Chemother (JAC) 73:3336–3345. https://doi.org/10.1093/jac/dky363

  • Livermore DM, Warner M, Jamrozy D et al (2015) In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob Agents Chemother 59:5324–5330. https://doi.org/10.1128/AAC.00678-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logan LK, Weinstein RA (2017) The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 215:S28–S36. https://doi.org/10.1093/infdis/jiw282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Hernández I, Alonso N, Fernández-Martínez M et al (2017) Activity of ceftazidime–avibactam against multidrug-resistance Enterobacteriaceae expressing combined mechanisms of resistance. Enferm Infecc Microbiol Clin 35:499–504. https://doi.org/10.1016/j.eimc.2016.09.013

    Article  PubMed  Google Scholar 

  • Manning N, Balabanian G, Rose M et al (2018) Activity of ceftazidime–avibactam against clinical isolates of Klebsiella pneumoniae, including KPC-carrying isolates, endemic to New York City. Microb Drug Resist 24:35–39. https://doi.org/10.1089/mdr.2016.0293

    Article  CAS  PubMed  Google Scholar 

  • Marshall S, Hujer AM, Rojas LJ et al (2017) Can ceftazidime-avibactam and aztreonam overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae? Antimicrob Agents Chemother 61:e02243-e2316. https://doi.org/10.1128/AAC.02243-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller L, Masseron A, Prod’Hom G et al (2019) Phenotypic, biochemical and genetic analysis of KPC-41, a KPC-3 variant conferring resistance to ceftazidime-avibactam and exhibiting reduced carbapenemase activity. Antimicrob Agents Chemother AAC 01111–19. https://doi.org/10.1128/AAC.01111-19

  • Munoz-Price LS, Poirel L, Bonomo RA et al (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13:785–796. https://doi.org/10.1016/S1473-3099(13)70190-7

    Article  PubMed  PubMed Central  Google Scholar 

  • National Health Surveillance Agency (2018) RE No 1.635. https://www.in.gov.br/. Accessed 3 Oct 2019

  • Nelson K, Hemarajata P, Sun D et al (2017) Resistance to ceftazidime-avibactam is due to transposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity. Antimicrob Agents Chemother 61:e00989-e1017. https://doi.org/10.1128/AAC.00989-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas-Chanoine M-H, Mayer N, Guyot K et al (2018) Interplay between membrane permeability and enzymatic barrier leads to antibiotic-dependent resistance in Klebsiella Pneumoniae. Front Microbiol 9:1422. https://doi.org/10.3389/fmicb.2018.01422

    Article  PubMed  PubMed Central  Google Scholar 

  • Oueslati S, Iorga BI, Tlili L et al (2019) Unravelling ceftazidime/avibactam resistance of KPC-28, a KPC-2 variant lacking carbapenemase activity. J Antimicrob Chemother 74:2239–2246. https://doi.org/10.1093/jac/dkz209

    Article  CAS  PubMed  Google Scholar 

  • Pagès J-M, Peslier S, Keating TA et al (2016) Role of the outer membrane and porins in susceptibility of β-lactamase-producing Enterobacteriaceae to ceftazidime-avibactam. Antimicrob Agents Chemother 60:1349–1359. https://doi.org/10.1128/AAC.01585-15

    Article  CAS  PubMed Central  Google Scholar 

  • Pogue JM, Bonomo RA, Kaye KS (2019) Ceftazidime/avibactam, meropenem/vaborbactam, or both? Clinical and Formulary Considerations. Clin Infect Dis 68:519–524. https://doi.org/10.1093/cid/ciy576

    Article  CAS  PubMed  Google Scholar 

  • Protonotariou M, Efthymia G, Kachrimanidou M, Papadopoulou S, Arhonti S, Dimitra Aikaterini ML (2020) In vitro activity of ceftazidime/avibactam against KPC-producing Klebsiella pneumoniae in Greece: A single-centre study. J Glob Antimicrob Resist 20:82–82–83. https://doi.org/10.1016/j.jgar.2019.11.021

  • Räisänen K, Koivula I, Ilmavirta H et al (2019) Emergence of ceftazidime-avibactam-resistant Klebsiella pneumoniae during treatment, Finland. December 2018 Euro Surveill 24. https://doi.org/10.2807/1560-7917.ES.2019.24.19.1900256

  • Ramalheira E, Stone GG (2019) Longitudinal analysis of the in vitro activity of ceftazidime/avibactam versus Enterobacteriaceae, 2012–2016. J Glob Antimicrob Resist 19:106–106–115. https://doi.org/10.1016/j.jgar.2019.07.003

  • Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A (2018) Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev 31:e00079–17, /cmr/31/2/e00079–17.atom. https://doi.org/10.1128/CMR.00079-17

  • Rossi F, Cury AP, Franco MRG et al (2017) The in vitro activity of ceftazidime–avibactam against 417 Gram-negative bacilli collected in 2014 and 2015 at a teaching hospital in São Paulo, Brazil. Braz J Infect Dis 21:569–573. https://doi.org/10.1016/j.bjid.2017.03.008

    Article  PubMed  Google Scholar 

  • Rossolini GM, Stone GG (2020) Assessment of the in vitro activity of ceftazidime/avibactam against a global collection of multidrug-resistant Klebsiella spp. from the INFORM surveillance programme (2015–2017). Int J Antimicrob Agents 56:. https://doi.org/10.1016/j.ijantimicag.2020.106111

  • Sader HS, Castanheira M, Duncan LR, Flamm RK (2018a) Antimicrobial susceptibility of Enterobacteriaceae and Pseudomonas aeruginosa isolates from United States medical centers stratified by infection type: results from the International Network for Optimal Resistance Monitoring (INFORM) Surveillance Program, 2015–2016. Diagn Microbiol Infect Dis 92:69–74. https://doi.org/10.1016/j.diagmicrobio.2018.04.012

    Article  CAS  PubMed  Google Scholar 

  • Sader HS, Castanheira M, Farrell DJ et al (2015a) Ceftazidime-avibactam activity when tested against ceftazidime-nonsusceptible Citrobacter spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa from Unites States medical centers (2011–2014). Diagn Microbiol Infect Dis 83:389–394. https://doi.org/10.1016/j.diagmicrobio.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  • Sader HS, Castanheira M, Flamm RK, et al (2015c) Ceftazidime/avibactam tested against Gram-negative bacteria from intensive care unit (ICU) and non-ICU patients, including those with ventilator-associated pneumonia. Int J Antimicrob Agents 46:53–53–59. https://doi.org/10.1016/j.ijantimicag.2015.02.022

  • Sader HS, Castanheira M, Flamm RK, et al (2016a) Ceftazidime-avibactam activity against aerobic Gram negative organisms isolated from intra-abdominal infections in United States hospitals, 2012–2014. Surg Infect 17:473–473–478. https://doi.org/10.1089/sur.2016.036

  • Sader HS, M Castanheira RK Flamm 2017a Antimicrobial activity of ceftazidime-avibactam against Gram-negative bacteria isolated from patients hospitalized with pneumonia in U.S. medical centers 2011 to 2015 Antimicrob Agents Chemother 61 e02083 e2116 https://doi.org/10.1128/AAC.02083-16

  • Sader HS, Castanheira M, Flamm RK, Jones RN (2016b) Antimicrobial activities of ceftazidime-avibactam and comparator agents against Gram-negative organisms isolated from patients with urinary tract infections in U.S. medical centers, 2012 to 2014. Antimicrob Agents Chemother 60:4355–4360. https://doi.org/10.1128/AAC.00405-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sader HS, Castanheira M, Jones RN, Flamm RK (2017b) Antimicrobial activity of ceftazidime–avibactam and comparator agents when tested against bacterial isolates causing infection in cancer patients (2013–2014). Diagn Microbiol Infect Dis 87:261–265. https://doi.org/10.1016/j.diagmicrobio.2016.11.019

    Article  CAS  PubMed  Google Scholar 

  • Sader HS, Castanheira M, Mendes RE, Flamm RK (2018b) Frequency and antimicrobial susceptibility of Gram-negative bacteria isolated from patients with pneumonia hospitalized in ICUs of US medical centres (2015–17). J Antimicrob Chemother 73:3053–3059. https://doi.org/10.1093/jac/dky279

    Article  CAS  PubMed  Google Scholar 

  • Sader HS, Castanheira M, Shortridge D (2017d) Antimicrobial activity of ceftazidime-avibactam tested against multidrug-resistant Enterobacteriaceae and Pseudomonas aeruginosa isolates from U.S. medical centers,2013 to 2016. Antimicrob Agents Chemother 61(e01045–17):e01045-e1117. https://doi.org/10.1128/AAC.01045-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sader HS, Castanheira M, Streit JM et al (2020a) Frequency and antimicrobial susceptibility of bacteria causing bloodstream infections in pediatric patients from United States (US) medical centers (2014–2018): therapeutic options for multidrug-resistant bacteria. Diagn Microbiol Infect Dis 98:115108. https://doi.org/10.1016/j.diagmicrobio.2020.115108

    Article  CAS  PubMed  Google Scholar 

  • Sader HS, Castanheira M, Streit JM, Flamm RK (2019) Frequency of occurrence and antimicrobial susceptibility of bacteria isolated from patients hospitalized with bloodstream infections in United States medical centers (2015–2017). Diagn Microbiol Infect Dis 95:114850. https://doi.org/10.1016/j.diagmicrobio.2019.06.002

    Article  CAS  PubMed  Google Scholar 

  • Sader HS, Flamm RK, Carvalhaes CG, Castanheira M (2020b) Comparison of ceftazidime-avibactam and ceftolozane-tazobactam in vitro activities when tested against gram-negative bacteria isolated from patients hospitalized with pneumonia in United States medical centers (2017–2018). Diagn Microbiol Infect Dis 96. https://doi.org/10.1016/j.diagmicrobio.2019.05.005

  • Sader HS, Huband MD, Duncan LR, Flamm RK (2018c) Ceftazidime–avibactam antimicrobial activity and spectrum when tested against Gram-negative organisms from pediatric patients: results from the INFORM Surveillance Program (United States, 2011–2015). Pediatr Infect Dis J 37:549–554. https://doi.org/10.1097/INF.0000000000001859

  • Shah PJ, Tran T, Emelogu F, Tariq F (2019) Aztreonam, ceftazidime/avibactam, and colistin combination for the management of carbapenemase-producing Klebsiella Pneumoniae bacteremia: a case report. J Pharm Pract 089719001988226. https://doi.org/10.1177/0897190019882262

  • Sharma R, Park TE, Moy S (2016) Ceftazidime-avibactam: a novel cephalosporin/β-lactamase inhibitor combination for the treatment of resistant Gram-negative organisms. Clin Ther 38:431–444. https://doi.org/10.1016/j.clinthera.2016.01.018

    Article  CAS  PubMed  Google Scholar 

  • Shaw E, Rombauts A, Tubau F et al (2018) Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother 73:1104–1106. https://doi.org/10.1093/jac/dkx496

    Article  CAS  PubMed  Google Scholar 

  • Shen Z, Ding B, Ye M et al (2017) High ceftazidime hydrolysis activity and porin OmpK35 deficiency contribute to the decreased susceptibility to ceftazidime/avibactam in KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother 72:1930–1936. https://doi.org/10.1093/jac/dkx066

    Article  CAS  PubMed  Google Scholar 

  • Shields RK, Chen L, Cheng S et al (2017a) Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother 61(e02097–16):e02097-e2116. https://doi.org/10.1128/AAC.02097-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shields RK, Nguyen MH, Press EG et al (2017b) In vitro selection of meropenem resistance among ceftazidime-avibactam-resistant, meropenem-susceptible Klebsiella pneumoniae isolates with variant KPC-3 carbapenemases. Antimicrob Agents Chemother 61:e00079-e117. https://doi.org/10.1128/AAC.00079-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shields RK, Potoski BA, Haidar G et al (2016) Clinical outcomes, drug toxicity, and emergence of ceftazidime-avibactam resistance among patients treated for carbapenem-resistant Enterobacteriaceae infections. Clin Infect Dis 63:1615–1618. https://doi.org/10.1093/cid/ciw636

  • Sonnevend Á, Ghazawi A, Darwish D et al (2020) In vitro efficacy of ceftazidime-avibactam, aztreonam-avibactam and other rescue antibiotics against carbapenem-resistant Enterobacterales from the Arabian Peninsula. Int J Infect Dis 99:253–259. https://doi.org/10.1016/j.ijid.2020.07.050

  • Spiliopoulou I, Kazmierczak K, Stone GG (2019) In vitro activity of ceftazidime/avibactam against isolates of carbapenem-non-susceptible Enterobacteriaceae collected during the INFORM global surveillance programme (2015–17). J Antimicrob Chemother dkz456. https://doi.org/10.1093/jac/dkz456

  • Stone GG, Bradford PA, Newell P, Wardman A (2017a) In vitro activity of ceftazidime-avibactam against isolates in a phase 3 open-label clinical trial for complicated intra-abdominal and urinary tract infections caused by ceftazidime-nonsusceptible Gram-negative pathogens. Antimicrob Agents Chemother 61:e01820-e1916. https://doi.org/10.1128/AAC.01820-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone GG, Bradford PA, Yates K, Newell P (2017b) In vitro activity of ceftazidime/avibactam against urinary isolates from patients in a Phase 3 clinical trial programme for the treatment of complicated urinary tract infections. J Antimicrob Chemother (JAC) 72:1396–1399. https://doi.org/10.1093/jac/dkw561

  • Stone GG, Newell P, Gasink LB et al (2018) Clinical activity of ceftazidime/avibactam against MDR Enterobacteriaceae and Pseudomonas aeruginosa: pooled data from the ceftazidime/avibactam Phase III clinical trial programme. J Antimicrob Chemother 73:2519–2523. https://doi.org/10.1093/jac/dky204

    Article  CAS  PubMed  Google Scholar 

  • Stone GG, Ponce-de-Leon A (2020) In vitro activity of ceftazidime/avibactam and comparators against Gram-negative bacterial isolates collected from Latin American centres between 2015 and 2017. J Antimicrob Chemother 75:1859–1873. https://doi.org/10.1093/jac/dkaa089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone GG, Seifert H, Nord CE (2020) In vitro activity of ceftazidime-avibactam against Gram-negative isolates collected in 18 European countries, 2015–2017. Int J Antimicrob Agents 56:106045. https://doi.org/10.1016/j.ijantimicag.2020.106045

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Chen W, Li H et al (2020) Phenotypic and genotypic analysis of KPC-51 and KPC-52, two novel KPC-2 variants conferring resistance to ceftazidime/avibactam in the KPC-producing Klebsiella pneumoniae ST11 clone background. J Antimicrob Chemother 75:3072–3074. https://doi.org/10.1093/jac/dkaa241

    Article  CAS  PubMed  Google Scholar 

  • The European Committee on Antimicrobial Susceptibility Testing (2020) Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0

  • Venditti C, Nisii C, Ballardini M et al (2019) Identification of L169P mutation in the omega loop of KPC-3 after a short course of ceftazidime/avibactam. J Antimicrob Chemother (JAC) 74:2466–2467. https://doi.org/10.1093/jac/dkz201

  • Villegas MV, Jiménez A, Esparza G, Appel TM (2019) Carbapenemase-producing Enterobacteriaceae: a diagnostic, epidemiological and therapeutic challenge. Infectio 23:388. https://doi.org/10.22354/in.v23i4.808

  • Voulgari E, Kotsakis SD, Giannopoulou P et al (2020) Detection in two hospitals of transferable ceftazidime-avibactam resistance in Klebsiella pneumoniae due to a novel VEB β-lactamase variant with a Lys234Arg substitution, Greece, 2019. Euro Surveill 25. https://doi.org/10.2807/1560-7917.ES.2020.25.2.1900766

  • Wilson WR, Kline EG, Jones CE et al (2019a) Effects of KPC variant and porin genotype on the in vitro activity of meropenem-vaborbactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother 63:e02048–18. https://doi.org/10.1128/AAC.02048-18

  • Wilson WR, Kline EG, Jones CE et al (2019b) Effects of KPC variant and porin genotype on the in vitro activity of meropenem-vaborbactam against carbapenem-resistant Enterobacteriaceae. Antimicrob Agents Chemother 63:e02048–18. https://doi.org/10.1128/AAC.02048-18

  • Winkler ML, Papp-Wallace KM, Bonomo RA (2015) Activity of ceftazidime/avibactam against isogenic strains of Escherichia coli containing KPC and SHV β-lactamases with single amino acid substitutions in the Ω-loop. J Antimicrob Chemother 70:2279–2286. https://doi.org/10.1093/jac/dkv094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise MG, Estabrook MA, Sahm DF et al (2018) Prevalence of mcr-type genes among colistin-resistant Enterobacteriaceae collected in 2014–2016 as part of the INFORM global surveillance program. PLoS ONE 13:e0195281. https://doi.org/10.1371/journal.pone.0195281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolter DJ, Kurpiel PM, Woodford N et al (2009) Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4. Antimicrob Agents Chemother 53:557–562. https://doi.org/10.1128/AAC.00734-08

    Article  CAS  PubMed  Google Scholar 

  • Yasmin M, Fouts DE, Jacobs MR et al (2020) Monitoring ceftazidime-avibactam and aztreonam concentrations in the treatment of a bloodstream infection caused by a multidrug-resistant Enterobacter sp. carrying both Klebsiella pneumoniae carbapenemase–4 and New Delhi metallo-β-lactamase–1. Clin Infect Dis 71:1095–1098. https://doi.org/10.1093/cid/ciz1155

    Article  CAS  PubMed  Google Scholar 

  • Yigit H, Queenan AM, Anderson GJ et al (2001) Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45:1151–1161. https://doi.org/10.1128/AAC.45.4.1151-1161.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin D, Wu S, Yang Y, et al (2019) Results from the China Antimicrobial Surveillance Network (CHINET) in 2017 of the in Vitro activities of ceftazidime-avibactam and ceftolozane-tazobactam against clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 63:e02431–18, /aac/63/4/AAC.02431–18.atom. https://doi.org/10.1128/AAC.02431-18

  • Yu Z, Qin W, Lin J et al (2015) Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed Res Int 2015:1–11. https://doi.org/10.1155/2015/679109

    Article  CAS  Google Scholar 

  • Zhang P, Shi Q, Hu H, et al (2019) Emergence of ceftazidime/avibactam resistance in carbapenem-resistant Klebsiella pneumoniae in China. Clin Microbiol Infect S1198743X19304835. https://doi.org/10.1016/j.cmi.2019.08.020

  • Zhang Y, Kashikar A, Brown CA et al (2017) Unusual Escherichia coli PBP 3 insertion sequence identified from a collection of carbapenem-resistant Enterobacteriaceae tested in vitro with a combination of ceftazidime-, ceftaroline-, or aztreonam-avibactam. Antimicrob Agents Chemother 61(e00389–17):e00389-e417. https://doi.org/10.1128/AAC.00389-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Yang J, Hu F et al (2020) Clinical and molecular epidemiologic characteristics of ceftazidime/avibactam-resistant carbapenem-resistant Klebsiella pneumoniae in a Neonatal Intensive Care Unit in China. Infect Drug Resist 13:2571–2578. https://doi.org/10.2147/IDR.S256922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Chen J, Liu Y et al (2018) In vitro activities of ceftaroline/avibactam, ceftazidime/avibactam, and other comparators against pathogens from various complicated infections in China. Clin Infect Dis 67:S206. https://doi.org/10.1093/cid/ciy659

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Juliana Caierão had the idea for the article, and Natália Kehl Moreira performed the literature search. Data analyses were performed by Natália Kehl Moreira and Juliana Caierão. The first draft of the manuscript was written by Natália Kehl Moreira. Juliana Caierão critically revised the work. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Natália Kehl Moreira.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, N.K., Caierão, J. Ceftazidime-avibactam: are we safe from class A carbapenemase producers’ infections?. Folia Microbiol 66, 879–896 (2021). https://doi.org/10.1007/s12223-021-00918-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12223-021-00918-5

Navigation