Skip to main content
Log in

Comparative activity of plazomicin against extended-spectrum cephalosporin-resistant Escherichia coli clinical isolates (2012–2017) in relation to phylogenetic background, sequence type 131 subclones, blaCTX-M genotype, and resistance to comparator agents

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Extended-spectrum cephalosporin-resistant Escherichia coli (ESCREC) are a growing threat. Leading ESCREC lineages include sequence type ST131, especially its (blaCTX-M-15-associated) H30Rx subclone and (blaCTX-M-27-associated) C1-M27 subset within the H30R1 subclone. The comparative activity against such strains of alternative antimicrobial agents, including the recently developed aminoglycoside plazomicin, is undefined, so was investigated here. We assessed plazomicin and 11 comparators for activity against 216 well-characterized ESCREC isolates (Minnesota, 2012–2017) and then compared broth microdilution MICs with phylogenetic and clonal background, beta-lactamase genotype (blaCTX-M; group 1 and 9 variants), and co-resistance. Percent susceptible was > 99% for plazomicin, meropenem, imipenem, and tigecycline; 96–98% for amikacin and ertapenem; and ≤ 75% for the remaining comparators. For most comparators, MICs varied significantly in relation to multiple bacterial characteristics, in agent-specific patterns. By contrast, for plazomicin, the only bacterial characteristic significantly associated with MICs was ST131 subclone: plazomicin MICs were lowest among O16 ST131 isolates and highest among ST131-H30R1 C1-M27 subclone isolates. Additionally, plazomicin MICs varied significantly in relation to resistance vs. susceptibility to comparator agents only for amikacin and levofloxacin. For most study agents, antimicrobial activity against ESCREC varied extensively in relation to multiple bacterial characteristics, including clonal background, whereas for plazomicin, it varied only by ST131 subclone (C1-M27 isolates least susceptible, O16 isolates most susceptible). These findings support plazomicin as a reliable alternative for treating ESCREC infections and urge continued attention to the C1-M27 ST131 subclone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CDC (2019) Antibiotic resistance threats in the United States, 2019. In: U.S. Department of Health and Human Services C (ed)

  2. Hawkey PM, Warren RE, Livermore DM, McNulty CAM, Enoch DA, Otter JA, Wilson PR (2018) Treatment of infections caused by multidrug-resistant Gram-negative bacteria: report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J Antimicrob Chemother 73(suppl 3):iii2–iii78

    Article  CAS  Google Scholar 

  3. Fournier D, Chirouze C, Leroy J, Cholley P, Talon D, Plésiat P, Bertrand X (2013) Alternatives to carbapenems in ESBL-producing Escherichia coli infections. Med Mal Infect 43:62–66

    Article  CAS  Google Scholar 

  4. Eljaaly K, Alharbi A, Alshehri S, Ortwine JK, Pogue JM (2019) Plazomicin: a novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs 79:243–269

    Article  CAS  Google Scholar 

  5. Shaeer KM, Zmarlicka MT, Chahine EB, Piccicacco N, Cho JC (2018) Plazomicin: a next-generation aminoglycoside. Pharmacotherapy 31:77–93

    Google Scholar 

  6. Saravolatz LD, Stein GE (2020) Plazomicin: a new aminoglycoside. Clin Infect Dis 70

  7. Wagenlehner F, Cloutier D, Komirenko A, Cebrik D, Krause K, Keepers T, Connolly L, Miller L, Friedland I, Dwyer J, EPIC Study Group (2019) Once-daily plazomicin for complicated urinary tract infections. N Engl J Med 380:729–740

    Article  CAS  Google Scholar 

  8. Zhanel G, Lawson C, Zelenitsky S, Findlay B, Schweizer F, Adam H, Walkty A, Rubinstein E, Gin A, Hoban DJ, Lynch J, Karlowsky JA (2012) Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin. Expert Rev Anti-Infect Ther 10:459–473

    Article  CAS  Google Scholar 

  9. Walkty A, Baxter H, Denisuik A, Lagacé-Wiens P, Karlowsky J, Hoban D, Zhanel G (2014) In vitro activity of plazomicin against 5,015 Gram-negative and Gram-positive clinical isolates obtained from patients in Canadian hospitals as part of the CANWARD study, 2011–2012. Antimicrob Agents Chemother 58:2554–2563

    Article  CAS  Google Scholar 

  10. Zhang Y, Kashikar A, Bush K (2017) In vitro activity of plazomicin against beta-lactamase-producing carbapenem-resistant Enterobacteriaceae (CRE). J Antimicrob Chemother 72:2792–2795

    Article  CAS  Google Scholar 

  11. Clark JA, Kulengowski B, Burgess DS (2020) In vitro activity of plazomicin compared to other clinically relevant aminoglycosides in carbapenem-resistant Enterobacteriaceae. Diagn Microbiol Infect Dis 98:115117

    Article  CAS  Google Scholar 

  12. Tchesnokova V, Billig M, Chattopadhyay S, Linardopoulou E, Aprikian P, Roberts PL, Skrivankova V, Johnston B, Gileva A, Igusheva I, Tolland A, Riddell R, Rogers P, Qin X, Butler-Wu S, Cookson BT, Fang FC, Kahl B, Price LB, Weissman SJ, Limaye A, Scholes D, Johnson JR, Sokurenko EV (2013) Predictive diagnostics for Escherichia coli infections based on the clonal association of antimicrobial resistance and clinical outcome. J Clin Microbiol 51:2991–2999

    Article  CAS  Google Scholar 

  13. Tchesnokova V, Avagyan H, Billig M, Chattopadhyay S, Aprikian P, Chan D, Pseunova J, Rechkina E, Riddell K, Scholes D, Fang F, Johnson J, Sokurenko E (2016) A novel 7-single nucleotide polymorphism-based clonotyping test allows rapid prediction of antimicrobial susceptibility of extraintestinal Escherichia coli directly from urine specimens. Open Forum Infect Dis 3:fw002

    Article  Google Scholar 

  14. Johnson J, Porter S, Thuras P, Castanheira M (2017) The pandemic H30 subclone of sequence type 131 (ST131) is the leading cause of multidrug-resistant Escherichia coli infections in the United States (2011-2012). Open Forum Infect Dis 4:ofx089

    Article  Google Scholar 

  15. Johnson JR, Johnston BD, Porter SB, Clabots C, Bender TL, Thuras P, Trott DJ, Cobbold R, Mollinger J, Ferrieri P, Drawz S, Banerjee R (2019) Rapid emergence, subsidence, and molecular detection of Escherichia coli sequence type 1193-fimH64 (ST1193-H64), a new disseminated multidrug-resistant commensal and extraintestinal pathogen. J Clin Microbiol 57:e01664–e01618

  16. Ben Zakour N, Alsheich-Hussain A, Ashcroft M, Nhu N, Roberts L, Stanton-Cook M, Schembri MA, Beatson SA (2016) Sequential acquisition of virulence and fluoroquinolone resistance has shaped the evolution of Escherichia coli ST131. mBio 7:e00347–e00316

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stoesser N, Sheppard AE, Pankhurst L, de Maio N, Moore C, Sebra R, Turner P, Anson L, Kasarkis A, Batty E, Kos V, Wilson D, Phetsouvanh R, Wyllie D, Sokurenko E, Manges A, Johnson TJ, Price LB, Peto T, Johnson J, Didelot X, Walker AS, Crook D The Modernizing Medical Microbiology Informatics Group (MMMIG) (2016) Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio 7:e02162–e02115

  18. Price LB, Johnson JR, Aziz M, Clabots C, Johnston B, Tchesnokova V, Nordstrom L, Billig M, Chattopadhyay S, Stegger M, Andersen PS, Pearson T, Riddell K, Rogers P, Scholes D, Kahl B, Keim P, Sokurenko EV (2013) The epidemic of ESBL-producing Escherichiae coli ST131 is driven by a single highly virulent subclone, H30-Rx. mBio 6:e00377–e00313

    Google Scholar 

  19. Johnson JR, Tchesnokova V, Johnston B, Clabots C, Roberts PL, Billig M, Riddel K, Rogers P, Qin X, Butler-Wu S, Price LB, Aziz M, Nicolas-Chanoine M, Debroy C, Robicsek A, Hansen G, Urban C, Platell JL, Trott DJ, Zhanel G, Weissman SJ, Cookson B, Fang F, Limaye AP, Scholes D, Chattopadhyay S, Hooper DC, Sokurenko E (2013) Abrupt emergence of a single dominant multi-drug-resistant strain of Escherichia coli. J Infect Dis 207:919–928

    Article  CAS  Google Scholar 

  20. Nicolas-Chanoine M-H, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Caniça MM, Park Y-J, Lavigne J-P, Pitout J, Johnson JR (2008) Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 61(2):273–281

    Article  CAS  Google Scholar 

  21. Matsumura Y, Johnson JR, Yamamoto M, Nagao M, Tanaka K, Takakura S, Ichiyama S, Kyoto-Shiga Clinical Microbiology Study Group (2015) CTX-M-27- and CTX-M-14-producing, ciprofloxacin-resistant Escherichia coli of the H30 subclonal group within ST131 drive a Japanese regional ESBL epidemic. J Antimicrob Chemother 70:1639–1649

    CAS  PubMed  Google Scholar 

  22. McNally A, Oren Y, Kelly D, Pascoe B, Dunn S, Sreecharan T, Vehkala M, Välimäki N, Prentice M, Ashour A, Avram O, Pupko T, Dobrindt U, Literak I, Guenther S, Schaufler K, Wieler LH, Zhiyong Z, Sheppard SK, McInerney JO, Corander J (2016) Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet 12:e1006280

    Article  Google Scholar 

  23. Johnston B, Thuras P, Porter S, Anacker M, VonBank B, Vagnone Snippes P, Witwer M, Castanheira M, Johnson J (2020) Activity of cefiderocol, ceftazidime-avibactam, and eravacycline against carbapenem-resistant Escherichia coli isolates from the United States and international sites in relation to clonal background, resistance genes, coresistance, and region. Antimicrob Agents Chemother 64:e00797–e00720

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Clinical and Laboratory Standards Institute (2020) M100: Performance standards for antimicrobial susceptibility testing, 30th edn. CLSI, Wayne, PA

    Google Scholar 

  25. Clermont O, Christenson JK, Denamur E, Gordon DM (2012) The Clermont Escherichia coli phylo-typing method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol Rep 5:58–65

    Article  Google Scholar 

  26. Clermont O, Christenson JK, Daubie A, Gordon DM, Denamur E (2014) Development of an allele-specific PCR for Escherichia coli B2 sub-typing, a rapid and easy to perform substitute of multilocus sequence typing. J Microbiol Methods 101:24–27

    Article  CAS  Google Scholar 

  27. Johnson JR, Porter S, Thuras P, Castanheira M (2017) Epidemic emergence in the United States of Escherichia coli sequence type 131-H30 (ST131-H30), 2000-2009. Antimicrob Agents Chemother 61pii:e00732–e00717

    Google Scholar 

  28. Johnson JR, Davis G, Clabots C, Johnston BD, Porter S, Debroy C, Pomputius W, Ender PT, Cooperstock M, Slater BS, Banerjee R, Miller S, Kisiela D, Sokurenko E, Aziz M, Price LB (2016) Household clustering of Escherichia coli sequence type 131 clinical and fecal isolates according to whole genome sequence analysis. Open Forum Infect Dis 3:ofw129

    Article  Google Scholar 

  29. Birgy A, Bidet P, Levy C, Sobral E, Cohen R, Bonacorsi S (2017) CTX-M-27–producing Escherichia coli of sequence type 131 and clade C1-M27, France. Emerg Infect Dis 23:885

    Article  CAS  Google Scholar 

  30. Saladin M, Cao VT, Lambert T, Donay JL, Herrmann JL, Ould-Hocine Z, Verdet C, Delisle F, Philippon A, Arlet G (2002) Diversity of CTX-M beta-lactamases and their promoter regions from Enterobacteriaceae isolated in three Parisian hospitals. FEMS Microbiol Lett 209:161–168

    CAS  PubMed  Google Scholar 

  31. Campbell I (2007) Chi-squared and Fisher-Irwin tests of two-by-two tables with small sample recommendations. Stat Med 26:3661–3675

    Article  Google Scholar 

  32. Livermore D, Mushtaq S, Warner M, Zhang J-C, Maharjan S, Doumith M, Woodford N (2011) Activity of aminoglycosides, including ACHN-490, against carbapenem-resistant Enterobacteriaceae isolates. J Antimicrob Chemother 66:48–53

    Article  CAS  Google Scholar 

  33. Doi Y, Wachino J, Arakawa Y (2016) Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect Dis Clin N Am 30:523–537

    Article  Google Scholar 

  34. Nau R, Sörgel F, Eiffert H (2010) Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system Infections. Clin Microbiol Rev 23:858–883

    Article  CAS  Google Scholar 

  35. Luaces-Rodríguez A, González-Barcia M, José Blanco-Teijeiro M, Gil-Martínez M, Gonzalez F, Gómez-Ulla F, Lamas M-J, Otero-Espinar F-J, Fernández-Ferreiro A (2018) Review of intraocular pharmacokinetics of anti-infectives commonly used in the treatment of infectious endophthalmitis. Pharmaceutics 10:66

    Article  Google Scholar 

  36. Lipsky B, Berendt A, Cornia P, Pile J, Peters E, Armstrong D, Deery H, Embil J, Joseph W, Karchmer A, Pinzur M, Senneville E (2012) 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis 54:132–173

    Article  Google Scholar 

  37. Charalabopoulos K, Karachalios G, Baltogiannis D, Charalabopoulos A, Giannakopoulos X, Sofikitis N (2003) Penetration of antimicrobial agents into the prostate. Chemother 49:269–279

    Article  CAS  Google Scholar 

  38. Matsumura Y, Pitout J, Gommi R, Matsuda T, Noguchi T, Yamamoto M, Peirano G, DeVinney R, Bradfor PA, Motyl M, Tanaka M, Nagao M, Takakura S, Ichiyama S (2016) Global Escherichia coli sequence type 131 clade with blaCTX-M-27 gene. Emerg Infect Dis 22:1900–1907

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The MVAMC Clinical Microbiology Laboratory provided the study isolates.

Availability of data and material

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Funding

This work was supported by an investigator-initiated grant from Cipla/Achaogen. This work was also supported by Office of Research and Development, Department of Veterans Affairs and the National Institute of Allergy and Infectious Diseases of the NIH (Antibacterial Resistance Leadership Group, award number UM1AI104681) (JRJ). The sponsors had no role in study design, data collection, data analysis, writing the manuscript, or the decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

1. Brian Johnston: Data collection and validation, laboratory procedures, data analysis, construction of tables, and manuscript writing and editing

2. Paul Thuras: Statistical analysis

3. Stephen B. Porter: Isolate collection, data collection, and manuscript editing

4. Connie Clabots: Isolate collection, data collection, and manuscript editing

5. James R. Johnson: Concept, funding, project oversight, and manuscript drafting and editing

Corresponding author

Correspondence to James R. Johnson.

Ethics declarations

Ethics approval (include appropriate approvals or waivers): The study was approved by the MVAMC Institutional Review Board.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

James R. Johnson has had grants and/or consultancies with Allergan/Actavis, Cipla/Achaogen, Janssen/Crucell, Melinta/The Medicines Company, Merck, Shionogi, Syntiron, and Tetraphase. The other authors report no financial conflicts of interest.

Disclaimer

The opinions expressed here are strictly those of the authors and do not necessarily represent those of the Department of Veteran Affairs or the authors' institutions.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 83 kb)

ESM 2

(PDF 99 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnston, B.D., Thuras, P., Porter, S.B. et al. Comparative activity of plazomicin against extended-spectrum cephalosporin-resistant Escherichia coli clinical isolates (2012–2017) in relation to phylogenetic background, sequence type 131 subclones, blaCTX-M genotype, and resistance to comparator agents. Eur J Clin Microbiol Infect Dis 40, 2069–2075 (2021). https://doi.org/10.1007/s10096-021-04256-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-021-04256-9

Keywords

Navigation