Skip to main content

Advertisement

Log in

Clinical effectiveness of oral antimicrobial therapy for acute pyelonephritis caused by extended-spectrum β-lactamase-producing Enterobacteriales

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Infections caused by extended-spectrum β-lactamase-producing Enterobacteriales (ESBL-PE) are commonly treated with intravenous antibiotics. This study investigated whether oral antimicrobial therapy (OAT) is as effective as intravenous antimicrobial therapy (IVT) for acute pyelonephritis (APN) caused by ESBL-PE. A retrospective cohort of patients with APN caused by ESBL-PE was studied at a tertiary-care hospital from January 2014 through December 2016. The OAT group comprised patients treated with an appropriate oral antimicrobial agent following 7 days or less of IVT. The primary endpoint was treatment failure defined as clinical and/or microbiological failure. The secondary endpoint was length of hospital stay and recurrences of APN within 2 months and within 1 year. Propensity score matching and multivariable Cox proportional hazard modeling were used to minimize bias. Among 238 eligible cases, Escherichia coli (83.6%) was the most common pathogen. Sixty patients received OAT after a median of four days of appropriate IVT, and 178 patients completed treatment with IVT. Fluoroquinolones (58.3%) were the most commonly prescribed OAT, followed by trimethoprim-sulfamethoxazole and amoxicillin-clavulanate. OAT was not associated with treatment failure (adjusted OR 0.66; 95% CI 0.18–2.44) and hospitalization length was shorter in the OAT group (6.2 days versus 10.7 days; P < 0.01). APN recurrence caused by ESBL-PE infection within 2 months was not associated with OAT (adjusted HR 0.56; 95% CI 0.16–2.00). OAT reduced hospital stay without adverse effects on treatment outcome. OAT could be safely applied as a carbapenem-saving option in treatment of APN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pitout JD, Laupland KB (2008) Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8(3):159–166. https://doi.org/10.1016/S1473-3099(08)70041-0

    Article  CAS  PubMed  Google Scholar 

  2. McDanel J, Schweizer M, Crabb V, Nelson R, Samore M, Khader K, Blevins AE, Diekema D, Chiang HY, Nair R, Perencevich E (2017) Incidence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella infections in the United States: a systematic literature review. Infect Control Hosp Epidemiol 38(10):1209–1215. https://doi.org/10.1017/ice.2017.156

    Article  PubMed  Google Scholar 

  3. Schwaber MJ, Carmeli Y (2007) Mortality and delay in effective therapy associated with extended-spectrum beta-lactamase production in Enterobacteriaceae bacteraemia: a systematic review and meta-analysis. J Antimicrob Chemother 60(5):913–920. https://doi.org/10.1093/jac/dkm318

    Article  CAS  PubMed  Google Scholar 

  4. Grau S, Fondevilla E, Echeverria-Esnal D, Alcorta A, Limon E, Gudiol F, group VIP (2019) Widespread increase of empirical carbapenem use in acute care hospitals in Catalonia, Spain. Enferm Infecc Microbiol Clin 37(1):36–40. https://doi.org/10.1016/j.eimc.2018.03.003

    Article  Google Scholar 

  5. Versporten A, Zarb P, Caniaux I, Gros MF, Drapier N, Miller M, Jarlier V, Nathwani D, Goossens H, Global PP (2018) Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: results of an internet-based global point prevalence survey. Lancet Glob Health 6(6):e619–e629. https://doi.org/10.1016/S2214-109X(18)30186-4

    Article  PubMed  Google Scholar 

  6. Iversen K, Ihlemann N, Gill SU, Madsen T, Elming H, Jensen KT, Bruun NE, Hofsten DE, Fursted K, Christensen JJ, Schultz M, Klein CF, Fosboll EL, Rosenvinge F, Schonheyder HC, Kober L, Torp-Pedersen C, Helweg-Larsen J, Tonder N, Moser C, Bundgaard H (2019) Partial oral versus intravenous antibiotic treatment of endocarditis. N Engl J Med 380(5):415–424. https://doi.org/10.1056/NEJMoa1808312

    Article  CAS  PubMed  Google Scholar 

  7. Park TY, Choi JS, Song TJ, Do JH, Choi SH, Oh HC (2014) Early oral antibiotic switch compared with conventional intravenous antibiotic therapy for acute cholangitis with bacteremia. Dig Dis Sci 59(11):2790–2796. https://doi.org/10.1007/s10620-014-3233-0

    Article  CAS  PubMed  Google Scholar 

  8. Daver NG, Shelburne SA, Atmar RL, Giordano TP, Stager CE, Reitman CA, White AC Jr (2007) Oral step-down therapy is comparable to intravenous therapy for Staphylococcus aureus osteomyelitis. J Inf Secur 54(6):539–544. https://doi.org/10.1016/j.jinf.2006.11.011

    Article  Google Scholar 

  9. Li HK, Rombach I, Zambellas R, Walker AS, McNally MA, Atkins BL, Lipsky BA, Hughes HC, Bose D, Kumin M, Scarborough C, Matthews PC, Brent AJ, Lomas J, Gundle R, Rogers M, Taylor A, Angus B, Byren I, Berendt AR, Warren S, Fitzgerald FE, Mack DJF, Hopkins S, Folb J, Reynolds HE, Moore E, Marshall J, Jenkins N, Moran CE, Woodhouse AF, Stafford S, Seaton RA, Vallance C, Hemsley CJ, Bisnauthsing K, Sandoe JAT, Aggarwal I, Ellis SC, Bunn DJ, Sutherland RK, Barlow G, Cooper C, Geue C, McMeekin N, Briggs AH, Sendi P, Khatamzas E, Wangrangsimakul T, Wong THN, Barrett LK, Alvand A, Old CF, Bostock J, Paul J, Cooke G, Thwaites GE, Bejon P, Scarborough M, Collaborators OT (2019) Oral versus intravenous antibiotics for bone and joint infection. N Engl J Med 380(5):425–436. https://doi.org/10.1056/NEJMoa1710926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, Srinivasan A, Dellit TH, Falck-Ytter YT, Fishman NO, Hamilton CW, Jenkins TC, Lipsett PA, Malani PN, May LS, Moran GJ, Neuhauser MM, Newland JG, Ohl CA, Samore MH, Seo SK, Trivedi KK (2016) Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 62(10):e51–e77. https://doi.org/10.1093/cid/ciw118

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gupta K, Hooton TM, Naber KG, Wullt B, Colgan R, Miller LG, Moran GJ, Nicolle LE, Raz R, Schaeffer AJ, Soper DE, Infectious Diseases Society of A, European Society for M, Infectious D (2011) International clinical practice guidelines for the treatment of acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin Infect Dis 52(5):e103–e120. https://doi.org/10.1093/cid/ciq257

    Article  PubMed  Google Scholar 

  12. Prakash V, Lewis JS 2nd, Herrera ML, Wickes BL, Jorgensen JH (2009) Oral and parenteral therapeutic options for outpatient urinary infections caused by enterobacteriaceae producing CTX-M extended-spectrum beta-lactamases. Antimicrob Agents Chemother 53(3):1278–1280. https://doi.org/10.1128/AAC.01519-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fairley KF, Carson NE, Gutch RC, Leighton P, Grounds AD, Laird EC, McCallum PH, Sleeman RL, O'Keefe CM (1971) Site of infection in acute urinary-tract infection in general practice. Lancet 2(7725):615–618

    Article  CAS  PubMed  Google Scholar 

  14. Seo MR, Kim SJ, Kim Y, Kim J, Choi TY, Kang JO, Wie SH, Ki M, Cho YK, Lim SK, Lee JS, Kwon KT, Lee H, Cheong HJ, Park DW, Ryu SY, Chung MH, Pai H (2014) Susceptibility of Escherichia coli from community-acquired urinary tract infection to fosfomycin, nitrofurantoin, and temocillin in Korea. J Korean Med Sci 29(8):1178–1181. https://doi.org/10.3346/jkms.2014.29.8.1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cardoso T, Almeida M, Friedman ND, Aragao I, Costa-Pereira A, Sarmento AE, Azevedo L (2014) Classification of healthcare-associated infection: a systematic review 10 years after the first proposal. BMC Med 12:40. https://doi.org/10.1186/1741-7015-12-40

    Article  PubMed  PubMed Central  Google Scholar 

  16. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis 40(5):373–383

    Article  CAS  PubMed  Google Scholar 

  17. U.S. Department of Health and Human Services Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_8.5x11.pdf. Accessed 1 Nov 2018

  18. Yilmaz C, Ozcengiz G (2017) Antibiotics: pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochem Pharmacol 133:43–62. https://doi.org/10.1016/j.bcp.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  19. Kim SH, Huh K, Cho SY, Kang CI, Chung DR, Peck KR (2019) Factors associated with the recurrence of acute pyelonephritis caused by extended-spectrum beta-lactamase-producing Escherichia coli: the importance of infectious disease consultation. Diagn Microbiol Infect Dis 94(1):55–59. https://doi.org/10.1016/j.diagmicrobio.2018.11.019

    Article  CAS  PubMed  Google Scholar 

  20. Kim SH, Oh S, Huh K, Cho SY, Kang CI, Chung DR, Peck KR (2019) Inappropriate empirical antibiotic therapy does not adversely affect the clinical outcomes of patients with acute pyelonephritis caused by extended-spectrum beta-lactamase-producing Enterobacteriales. Eur J Clin Microbiol Infect Dis 38(5):937–944. https://doi.org/10.1007/s10096-019-03528-9

    Article  PubMed  Google Scholar 

  21. Auer S, Wojna A, Hell M (2010) Oral treatment options for ambulatory patients with urinary tract infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli. Antimicrob Agents Chemother 54(9):4006–4008. https://doi.org/10.1128/AAC.01760-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Veve MP, Wagner JL, Kenney RM, Grunwald JL, Davis SL (2016) Comparison of fosfomycin to ertapenem for outpatient or step-down therapy of extended-spectrum beta-lactamase urinary tract infections. Int J Antimicrob Agents 48(1):56–60. https://doi.org/10.1016/j.ijantimicag.2016.04.014

    Article  CAS  PubMed  Google Scholar 

  23. Malaisri C, Phuphuakrat A, Wibulpolprasert A, Santanirand P, Kiertiburanakul S (2017) A randomized controlled trial of sitafloxacin vs. ertapenem as a switch therapy after treatment for acute pyelonephritis caused by extended-spectrum beta-lactamase-producing Escherichia coli: a pilot study. J Infect Chemother 23(8):556–562. https://doi.org/10.1016/j.jiac.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  24. Beytur A, Yakupogullari Y, Oguz F, Otlu B, Kaysadu H (2015) Oral amoxicillin-clavulanic acid treatment in urinary tract infections caused by extended-spectrum Beta-lactamase-producing organisms. Jundishapur J Microbiol 8(1):e13792. https://doi.org/10.5812/jjm.13792

    Article  PubMed  Google Scholar 

  25. Cohen Stuart J, Leverstein-Van Hall M, Kortmann W, Verlind J, Mulder F, Scharringa J, Fluit A, Ekkelenkamp M (2018) Ceftibuten plus amoxicillin-clavulanic acid for oral treatment of urinary tract infections with ESBL producing E. coli and K. pneumoniae: a retrospective observational case-series. Eur J Clin Microbiol Infect Dis 37(10):2021–2025. https://doi.org/10.1007/s10096-018-3338-z

    Article  CAS  PubMed  Google Scholar 

  26. Tamma PD, Conley AT, Cosgrove SE, Harris AD, Lautenbach E, Amoah J, Avdic E, Tolomeo P, Wise J, Subudhi S, Han JH, Antibacterial Resistance Leadership G (2019) Association of 30-day mortality with oral step-down vs continued intravenous therapy in patients hospitalized with Enterobacteriaceae bacteremia. JAMA Intern Med. https://doi.org/10.1001/jamainternmed.2018.6226

    Article  PubMed  PubMed Central  Google Scholar 

  27. Itoh N, Hadano Y, Saito S, Myokai M, Nakamura Y, Kurai H (2018) Intravenous to oral switch therapy in cancer patients with catheter-related bloodstream infection due to methicillin-sensitive Staphylococcus aureus: a single-center retrospective observational study. PLoS One 13(11):e0207413. https://doi.org/10.1371/journal.pone.0207413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rattanaumpawan P, Thamlikitkul V (2017) Epidemiology and economic impact of health care-associated infections and cost-effectiveness of infection control measures at a Thai university hospital. Am J Infect Control 45(2):145–150. https://doi.org/10.1016/j.ajic.2016.07.018

    Article  PubMed  Google Scholar 

  29. Steffens E, Quintens C, Derdelinckx I, Peetermans WE, Van Eldere J, Spriet I, Schuermans A (2019) Outpatient parenteral antimicrobial therapy and antibiotic stewardship: opponents or teammates? Infection 47(2):169–181. https://doi.org/10.1007/s15010-018-1250-1

    Article  PubMed  Google Scholar 

  30. Loo VG, Bourgault AM, Poirier L, Lamothe F, Michaud S, Turgeon N, Toye B, Beaudoin A, Frost EH, Gilca R, Brassard P, Dendukuri N, Beliveau C, Oughton M, Brukner I, Dascal A (2011) Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med 365(18):1693–1703. https://doi.org/10.1056/NEJMoa1012413

    Article  CAS  PubMed  Google Scholar 

  31. Stevens V, Dumyati G, Fine LS, Fisher SG, van Wijngaarden E (2011) Cumulative antibiotic exposures over time and the risk of Clostridium difficile infection. Clin Infect Dis 53(1):42–48. https://doi.org/10.1093/cid/cir301

    Article  PubMed  Google Scholar 

  32. Clinical and Laboratory Standards Institute (2019) Performance standards for antimicrobial susceptibility testing, 29th edn. Clinical and Laboratory Standards, Wayne

    Google Scholar 

  33. Zelenitsky SA, Ariano RE (2010) Support for higher ciprofloxacin AUC 24/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother 65(8):1725–1732. https://doi.org/10.1093/jac/dkq211

    Article  CAS  PubMed  Google Scholar 

  34. Seok H, Cha MK, Kang CI, Cho SY, Kim SH, Ha YE, Chung DR, Peck KR, Song JH (2018) Failure of ciprofloxacin therapy in the treatment of community-acquired acute pyelonephritis caused by in-vitro susceptible Escherichia coli strain producing CTX-type extended-spectrum beta-lactamase. Infect Chemother 50(4):357–361. https://doi.org/10.3947/ic.2018.50.4.357

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Statistics and Data Center at Samsung Medical Center for their statistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyong Ran Peck.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

The study was approved by the local research ethics committee (IRB number: 2018-05-089)

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Lim, K.R., Lee, H. et al. Clinical effectiveness of oral antimicrobial therapy for acute pyelonephritis caused by extended-spectrum β-lactamase-producing Enterobacteriales. Eur J Clin Microbiol Infect Dis 39, 159–167 (2020). https://doi.org/10.1007/s10096-019-03705-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-019-03705-w

Keywords

Navigation