Skip to main content

Advertisement

Log in

Evaluation of the novel artus C. difficile QS-RGQ, VanR QS-RGQ and MRSA/SA QS-RGQ assays for the laboratory diagnosis of Clostridium difficile infection (CDI), and for vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) screening

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Clostridium difficile, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) are worldwide prevalent healthcare-associated pathogens. We have evaluated three Qiagen artus QS-RGQ assays for the detection of these pathogens. We examined 200 stool samples previously tested for C. difficile infection (CDI), 94 rectal swabs previously screened for VRE and 200 MRSA screening nasal swabs. With the routine diagnostic laboratory results being adopted as the gold standard, the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the artus C. difficile assay were 100%, for the artus VanR QS-RGQ assay, 95, 68, 44 and 98%, and for the artus MRSA/SA assay, 80, 94, 93 and 83%, respectively. The artus VanR assay detected the vanA and/or vanB genes in 32% of culture-negative VRE screens; in 71% of these cases, only vanB was detected. An over-estimation of the rate of faecal VRE colonisation could be due to a patient population with high rates of faecal carriage of non-enterococcal species carrying vanB. Based on our findings, we conclude that all three artus QS-RGQ assays could be a useful addition to a diagnostic laboratory, and that the optimal choice of assay should be determined according to user needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kara A, Devrim İ, Bayram N, Katipoğlu N, Kıran E, Oruç Y, Demiray N, Apa H, Gülfidan G (2015) Risk of vancomycin-resistant enterococci bloodstream infection among patients colonized with vancomycin-resistant enterococci. Braz J Infect Dis 19:58–61

    Article  PubMed  Google Scholar 

  2. Khanna S, Pardi DS (2010) The growing incidence and severity of Clostridium difficile infection in inpatient and outpatient settings. Expert Rev Gastroenterol Hepatol 4:409–416

    Article  PubMed  Google Scholar 

  3. Köck R, Becker K, Cookson B, van Gemert-Pijnen JE, Harbarth S, Kluytmans J, Mielke M, Peters G, Skov RL, Struelens MJ, Tacconelli E, Navarro Torné A, Witte W, Friedrich AW (2010) Methicillin-resistant Staphylococcus aureus (MRSA): burden of disease and control challenges in Europe. Euro Surveill 15:19688

    PubMed  Google Scholar 

  4. World Health Organization (WHO) (2011) Report on the burden of endemic health care-associated infection worldwide. A systematic review of the literature. Available online at: http://www.who.int/en/. Accessed 11 April 2016

  5. Walters PR, Zuckerbraun BS (2014) Clostridium difficile infection: clinical challenges and management strategies. Crit Care Nurse 34:24–35

    Article  PubMed  Google Scholar 

  6. Office for National Statistics (ONS) (2013) Deaths involving Clostridium difficile, England and Wales: 2012. Statistical Bulletin. 22 August 2013

  7. White A (2015) Weekly digest: CDC study reports 29,000 annual US deaths related to C. difficile. Available online at: http://www.cddep.org/blog/posts/weekly_digest_cdc_study_reports_29000_annual_us_deaths_related_c_difficile. Accessed 13 July 16

  8. Planche TD, Davies KA, Coen PG, Finney JM, Monahan IM, Morris KA, O’Connor L, Oakley SJ, Pope CF, Wren MW, Shetty NP, Crook DW, Wilcox MH (2013) Differences in outcome according to Clostridium difficile testing method: a prospective multicentre diagnostic validation study of C difficile infection. Lancet Infect Dis 13:936–945

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arias CA, Murray BE (2012) The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol 10:266–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sreeja S, Sreenivasa Babu PR, Prathab AG (2012) The prevalence and the characterization of the enterococcus species from various clinical samples in a tertiary care hospital. J Clin Diagn Res 6:1486–1488

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zirakzadeh A, Patel R (2006) Vancomycin-resistant enterococci: colonization, infection, detection, and treatment. Mayo Clin Proc 81:529–536

    Article  CAS  PubMed  Google Scholar 

  12. Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A, Klare I, Kristinsson KG, Leclercq R, Lester CH, Lillie M, Novais C, Olsson-Liljequist B, Peixe LV, Sadowy E, Simonsen GS, Top J, Vuopio-Varkila J, Willems RJ, Witte W, Woodford N (2008) Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill 13:19046

    PubMed  Google Scholar 

  13. Werner G, Klare I, Fleige C, Geringer U, Witte W, Just HM, Ziegler R (2012) Vancomycin-resistant vanB-type Enterococcus faecium isolates expressing varying levels of vancomycin resistance and being highly prevalent among neonatal patients in a single ICU. Antimicrob Resist Infect Control 1:21

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li S, Li J, Qiao Y, Ning X, Zeng T, Shen X (2014) Prevalence and invasiveness of community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis. Indian J Pathol Microbiol 57:418–422

    Article  PubMed  Google Scholar 

  15. Sastre A, Roberts PF, Presutti RJ (2013) A practical guide to community-acquired MRSA. J Fam Pract 62:624–629

    PubMed  Google Scholar 

  16. Leclercq R (2009) Epidemiological and resistance issues in multidrug-resistant staphylococci and enterococci. Clin Microbiol Infect 15:224–231

    Article  CAS  PubMed  Google Scholar 

  17. Rohr U, Kaminski A, Wilhelm M, Jurzik L, Gatermann S, Muhr G (2009) Colonization of patients and contamination of the patients’ environment by MRSA under conditions of single-room isolation. Int J Hyg Environ Health 212:209–215

    Article  PubMed  Google Scholar 

  18. Polisena J, Chen S, Cimon K, McGill S, Forward K, Gardam M (2011) Clinical effectiveness of rapid tests for methicillin resistant Staphylococcus aureus (MRSA) in hospitalized patients: a systematic review. BMC Infect Dis 11:336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roisin S, Laurent C, Denis O, Dramaix M, Nonhoff C, Hallin M, Byl B, Struelens MJ (2014) Impact of rapid molecular screening at hospital admission on nosocomial transmission of methicillin-resistant Staphylococcus aureus: cluster randomised trial. PLoS One 9, e96310

    Article  PubMed  PubMed Central  Google Scholar 

  20. Burnham CA, Carroll KC (2013) Diagnosis of Clostridium difficile infection: an ongoing conundrum for clinicians and for clinical laboratories. Clin Microbiol Rev 26:604–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hart J, Putsathit P, Knight DR, Sammels L, Riley TV, Keil A (2014) Clostridium difficile infection diagnosis in a paediatric population: comparison of methodologies. Eur J Clin Microbiol Infect Dis 33:1555–1564

    Article  CAS  PubMed  Google Scholar 

  22. Orellana-Miguel MA, Alcolea-Medina A, Barrado-Blanco L, Rodriguez-Otero J, Chaves-Sánchez F (2013) Algorithm proposal based on the C. Diff Quik Chek Complete ICT device for detecting Clostridium difficile infection. Enferm Infecc Microbiol Clin 31:97–99

    Article  PubMed  Google Scholar 

  23. Surawicz CM, Brandt LJ, Binion DG, Ananthakrishnan AN, Curry SR, Gilligan PH, McFarland LV, Mellow M, Zuckerbraun BS (2013) Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am J Gastroenterol 108:478–498

    Article  CAS  PubMed  Google Scholar 

  24. Crobach MJ, Planche T, Eckert C, Barbut F, Terveer EM, Dekkers OM, Wilcox MH, Kuijper EJ (2016) European Society of Clinical Microbiology and Infectious Diseases: update of the diagnostic guidance document for Clostridium difficile infection. Clin Microbiol Infect 22(Suppl 4):S63–S81

    Article  PubMed  Google Scholar 

  25. Jazmati N, Wiegel P, Ličanin B, Plum G (2015) Evaluation of the Qiagen artus C. difficile QS-RGQ Kit for detection of Clostridium difficile toxins A and B in clinical stool specimens. J Clin Microbiol 53:1942–1944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moon HW, Kim HN, Kim JY, Hur M, Kim H, Yun YM (2016) Performance of the artus C. difficile QS-RGQ kit for the detection of toxigenic Clostridium difficile. Clin Biochem. doi:10.1016/j.clinbiochem.2016.08.013

    Google Scholar 

  27. Alcalá L, Reigadas E, Marín M, Fernández-Chico A, Catalán P, Bouza E (2015) Comparison of GenomEra C. difficile and Xpert C. difficile as confirmatory tests in a multistep algorithm for diagnosis of Clostridium difficile infection. J Clin Microbiol 53:332–335

    Article  PubMed  Google Scholar 

  28. Beneš J, Husa P, Nyč O, Polívková S (2014) Diagnosis and therapy of Clostridium difficile infection: Czech national guidelines. Klin Mikrobiol Infekc Lek 20:56–66

    PubMed  Google Scholar 

  29. Bagdasarian N, Rao K, Malani PN (2015) Diagnosis and treatment of Clostridium difficile in adults: a systematic review. JAMA 313:398–408

    Article  PubMed  Google Scholar 

  30. Peterson LR, Manson RU, Paule SM, Hacek DM, Robicsek A, Thomson RB Jr, Kaul KL (2007) Detection of toxigenic Clostridium difficile in stool samples by real-time polymerase chain reaction for the diagnosis of C. difficile-associated diarrhea. Clin Infect Dis 45:1152–1160

    Article  CAS  PubMed  Google Scholar 

  31. Arends JP, Zhou X, Kampinga GA, Meessen NEL, Friedrich AW (2012) Prevalence of phenotypically vancomycin susceptible, but vanB-PCR positive, Enterococcus faecium: do we overlook VRE vanB carrying strains in our hospital? In: Proceedings of the 22nd European Congress of Clinical Microbiology Infectious Diseases (ECCMID), London, UK, March/April 2012, poster P1289

  32. Mak A, Miller MA, Chong G, Monczak Y (2009) Comparison of PCR and culture for screening of vancomycin-resistant enterococci: highly disparate results for vanA and vanB. J Clin Microbiol 47:4136–4137

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hegstad K, Giske CG, Haldorsen B, Matuschek E, Schønning K, Leegaard TM, Kahlmeter G, Sundsfjord A; NordicAST VRE Detection Study Group (2014) Performance of the EUCAST disk diffusion method, the CLSI agar screen method, and the Vitek 2 automated antimicrobial susceptibility testing system for detection of clinical isolates of enterococci with low- and medium-level VanB-type vancomycin resistance: a multicenter study. J Clin Microbiol 52:1582–1589

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wijesuriya TM, Perry P, Pryce T, Boehm J, Kay I, Flexman J, Coombs GW, Ingram PR (2014) Low vancomycin MICs and fecal densities reduce the sensitivity of screening methods for vancomycin resistance in Enterococci. J Clin Microbiol 52:2829–2833

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ballard SA, Grabsch EA, Johnson PD, Grayson ML (2005) Comparison of three PCR primer sets for identification of vanB gene carriage in feces and correlation with carriage of vancomycin-resistant enterococci: interference by vanB-containing anaerobic bacilli. Antimicrob Agents Chemother 49:77–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Domingo MC, Huletsky A, Giroux R, Boissinot K, Picard FJ, Lebel P, Ferraro MJ, Bergeron MG (2005) High prevalence of glycopeptide resistance genes vanB, vanD, and vanG not associated with enterococci in human fecal flora. Antimicrob Agents Chemother 49:4784–4786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Graham M, Ballard SA, Grabsch EA, Johnson PDR, Grayson ML (2008) High rates of fecal carriage of nonenterococcal vanB in both children and adults. Antimicrob Agents Chemother 52:1195–1197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huh HJ, Kim ES, Chae SL (2012) Methicillin-resistant Staphylococcus aureus in nasal surveillance swabs at an intensive care unit: an evaluation of the LightCycler MRSA advanced test. Ann Lab Med 32:407–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hos NJ, Wiegel P, Fischer J, Plum G (2016) Comparative evaluation of two fully-automated real-time PCR methods for MRSA admission screening in a tertiary-care hospital. Eur J Clin Microbiol Infect Dis 35:1475–1478

    Article  CAS  PubMed  Google Scholar 

  40. Lee S, Park YJ, Park KG, Jekarl DW, Chae H, Yoo JK, Seo SW, Choi JE, Lim JH, Heo SM, Seo JH (2013) Comparative evaluation of three chromogenic media combined with broth enrichment and the real-time PCR-based Xpert MRSA assay for screening of methicillin-resistant Staphylococcus aureus in nasal swabs. Ann Lab Med 33:255–260

    Article  PubMed  PubMed Central  Google Scholar 

  41. Patel PA, Schora DM, Peterson KE, Grayes A, Boehm S, Peterson LR (2014) Performance of the Cepheid Xpert® SA Nasal Complete PCR assay compared to culture for detection of methicillin-sensitive and methicillin-resistant Staphylococcus aureus colonization. Diagn Microbiol Infect Dis 80:32–34

    Article  CAS  PubMed  Google Scholar 

  42. Yam WC, Siu GK, Ho PL, Ng TK, Que TL, Yip KT, Fok CP, Chen JH, Cheng VC, Yuen KY (2013) Evaluation of the LightCycler methicillin-resistant Staphylococcus aureus (MRSA) advanced test for detection of MRSA nasal colonization. J Clin Microbiol 51:2869–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank QIAGEN for supplying the QIAsymphony RGQ MDx system, artus assays, related reagents and consumables, as well as for their technical expertise. We also thank Cepheid for supplying the Xpert SA Nasal Complete assays and technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Morris.

Ethics declarations

Funding

This study was funded by Qiagen (grant number 403774_Qiagen_2014).

Conflict of interest

MHW declares that he has the following conflict of interests: I have received consulting fees from Qiagen and grant funding from Cepheid. In addition, QIAGEN supplied the QIAsymphony RGQ MDx system, artus assays, related reagents and consumables, as well as technical expertise. Cepheid supplied the Xpert SA Nasal Complete assays and technical advice.

Ethical approval

No ethical approval was required for this study.

Informed consent

No informed consent was required for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, K.A., Macfarlane-Smith, L.R. & Wilcox, M.H. Evaluation of the novel artus C. difficile QS-RGQ, VanR QS-RGQ and MRSA/SA QS-RGQ assays for the laboratory diagnosis of Clostridium difficile infection (CDI), and for vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA) screening. Eur J Clin Microbiol Infect Dis 36, 823–829 (2017). https://doi.org/10.1007/s10096-016-2867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2867-6

Keywords

Navigation