Skip to main content
Log in

Elucidating constraints for differentiation of major human Klebsiella pneumoniae clones using MALDI-TOF MS

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The establishment of matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) in routine microbial identification boosted many developments towards high-throughput applications, including bacterial typing. However, results are still controversial for different bacterial species. We aim to evaluate the suitability of MALDI-TOF MS for typing clinically relevant multidrug resistant (MDR) Klebsiella pneumoniae subsp. pneumoniae clones using routine conditions and a previously validated chemometric analysis workflow. Mass spectra of 83 K. pneumoniae clinical isolates representing major human MDR clones [11 sequence types (STs), 22 PFGE-types] recovered in Portugal and Spain during outbreaks and non-outbreak situations (2003–2012) were obtained from cell extracts (CE) and intact cells (IC), and analysed with different chemometric tools. We observed a highly consistent peak pattern among isolates from different clones either with CE or IC, suggesting a high degree of conservation of biomolecules analysed (a large part corresponding to ribosomal proteins). Moreover, the low degree of agreement between MALDI-TOF MS and other methods (from 34.9 % to 43.4 % of correct assignments for CE and from 40.8 % to 70.1 % for IC) corroborates the low discriminatory potential of the technique at infraspecies level. Our results suggest a low discriminatory power of MALDI-TOF MS for clinically relevant MDR K. pneumoniae clones and highlight the need of developing tools for high-resolution typing in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van Belkum A, Chatellier S, Girard V, Pincus D, Deol P, Dunne WM (2015) Progress in proteomics for clinical microbiology: MALDI-TOF MS for microbial species identification and more. Expert Rev Proteomics 12:595–605. doi:10.1586/14789450.2015.1091731

    Article  PubMed  Google Scholar 

  2. Santos IC, Hildenbrand ZL, Schug KA (2016) Applications of MALDI-TOF MS in environmental microbiology. Analyst 141:2827–37. doi:10.1039/C6AN00131A

    Article  CAS  PubMed  Google Scholar 

  3. Wenning M, Breitenwieser F, Konrad R, Huber I, Busch U, Scherer S (2014) Identification and differentiation of food-related bacteria: A comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. J Microbiol Methods 103:44–52. doi:10.1016/j.mimet.2014.05.011

    Article  CAS  PubMed  Google Scholar 

  4. Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791. doi:10.3389/fmicb.2015.00791

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cheng K, Chui H, Domish L, Hernandez D, Wang G (2016) Recent development of mass spectrometry and proteomics applications in identification and typing of bacteria. Proteomics Clin Appl 10:346–57. doi:10.1002/prca.201500086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spinali S, van Belkum A, Goering RV, Girard V, Welker M, Van Nuenen M et al (2015) Microbial typing by matrix-assisted laser desorption ionization-time of flight mass spectrometry: do we need guidance for data interpretation? J Clin Microbiol 53:760–5. doi:10.1128/JCM.01635-14

    Article  CAS  PubMed  Google Scholar 

  7. Camoez M, Sierra JM, Dominguez MA, Ferrer-Navarro M, Vila J, Roca I (2016) Automated categorization of methicillin-resistant Staphylococcus aureus clinical isolates into different clonal complexes by MALDI-TOF mass spectrometry. Clin Microbiol Infect 22:161.e1–7. doi:10.1016/j.cmi.2015.10.009

    Article  PubMed  Google Scholar 

  8. Lasch P, Fleige C, Stämmler M, Layer F, Nübel U, Witte W et al (2014) Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates. J Microbiol Methods 100:58–69. doi:10.1016/j.mimet.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  9. Mencacci A, Monari C, Leli C, Merlini L, De Carolis E, Vella A et al (2013) Typing of nosocomial outbreaks of Acinetobacter baumannii by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 51:603–6. doi:10.1128/JCM.01811-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sousa C, Botelho J, Grosso F, Silva L, Lopes J, Peixe L (2015) Unsuitability of MALDI-TOF MS to discriminate Acinetobacter baumannii clones under routine experimental conditions. Front Microbiol 6:481. doi:10.3389/fmicb.2015.00481

    PubMed  PubMed Central  Google Scholar 

  11. Cabrolier N, Sauget M, Bertrand X, Hocquet D (2015) Matrix-assisted laser desorption ionization-time of flight mass spectrometry identifies Pseudomonas aeruginosa high-risk clones. J Clin Microbiol 53:1395–8. doi:10.1128/JCM.00210-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Novais Â, Sousa C, de Dios Caballero J, Fernandez-Olmos A, Lopes J, Ramos H et al (2014) MALDI-TOF mass spectrometry as a tool for the discrimination of high-risk Escherichia coli clones from phylogenetic groups B2 (ST131) and D (ST69, ST405, ST393). Eur J Clin Microbiol Infect Dis 33:1391–9. doi:10.1007/s10096-014-2071-5

    Article  CAS  PubMed  Google Scholar 

  13. WHO (2014) Antimicrobial resistance: global report on surveillance 2014. World Health Organization, Geneva

  14. Bialek-Davenet S, Criscuolo A, Ailloud F, Passet V, Jones L, Delannoy-Vieillard AS et al (2014) Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis 20:1812–20. doi:10.3201/eid2011.140206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Holt KE, Wertheim H, Zadoks RN, Baker S, Whitehouse CA, Dance D et al (2015) Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci USA 112:E3574–81. doi:10.1073/pnas.1501049112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brisse S, Passet V, Haugaard AB, Babosan A, Kassis-Chikhani N, Struve C et al (2013) wzi Gene sequencing, a rapid method for determination of capsular type for Klebsiella strains. J Clin Microbiol 51:4073–8. doi:10.1128/JCM.01924-13

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pan YJ, Lin TL, Chen YH, Hsu CR, Hsieh PF, Wu MC et al (2013) Capsular types of Klebsiella pneumoniae revisited by wzc sequencing. PLoS One 8:e80670. doi:10.1371/journal.pone.0080670

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rodrigues C, Machado E, Ramos H, Peixe L, Novais  (2014) Expansion of ESBL-producing Klebsiella pneumoniae in hospitalized patients: a successful story of international clones (ST15, ST147, ST336) and epidemic plasmids (IncR, IncFIIK). Int J Med Microbiol 304:1100–8. doi:10.1016/j.ijmm.2014.08.003

    Article  PubMed  Google Scholar 

  19. Bernaschi P, Del Chierico F, Petrucca A, Argentieri A, Ciofi Degli Atti M, Ciliento G et al (2013) Microbial tracking of multidrug-resistant Klebsiella pneumoniae isolates in a pediatric hospital setting. Int J Immunopathol Pharmacol 26:463–72

    Article  CAS  PubMed  Google Scholar 

  20. Berrazeg M, Diene SM, Drissi M, Kempf M, Richet H, Landraud L et al (2013) Biotyping of multidrug-resistant Klebsiella pneumoniae clinical isolates from France and Algeria using MALDI-TOF MS. PLoS One 8:e61428. doi:10.1371/journal.pone.0061428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sachse S, Bresan S, Erhard M, Edel B, Pfister W, Saupe A et al (2014) Comparison of multilocus sequence typing, RAPD, and MALDI-TOF mass spectrometry for typing of β-lactam-resistant Klebsiella pneumoniae strains. Diagn Microbiol Infect Dis 80:267–71. doi:10.1016/j.diagmicrobio.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  22. Treviño M, Navarro D, Barbeito G, García-Riestra C, Crespo C, Regueiro BJ (2011) Molecular and epidemiological analysis of nosocomial carbapenem-resistant Klebsiella spp. using repetitive extragenic palindromic-polymerase chain reaction and matrix-assisted laser desorption/ionization-time of flight. Microb Drug Resist 17:433–42. doi:10.1089/mdr.2010.0182

    Article  PubMed  Google Scholar 

  23. Freitas F, Machado E, Ribeiro TG, Novais Â, Peixe L (2014) Long-term dissemination of acquired AmpC β-lactamases among Klebsiella spp. and Escherichia coli in Portuguese clinical settings. Eur J Clin Microbiol Infect Dis 33:551–8. doi:10.1007/s10096-013-1983-9

    Article  CAS  PubMed  Google Scholar 

  24. Machado E, Coque TM, Cantón R, Novais A, Sousa JC, Baquero F et al (2007) High diversity of extended-spectrum beta-lactamases among clinical isolates of Enterobacteriaceae from Portugal. J Antimicrob Chemother 60:1370–4. doi:10.1093/jac/dkm381

    Article  CAS  PubMed  Google Scholar 

  25. Curiao T, Morosini MI, Ruiz-Garbajosa P, Robustillo A, Baquero F, Coque TM et al (2010) Emergence of bla KPC-3-Tn4401a associated with a pKPN3/4-like plasmid within ST384 and ST388 Klebsiella pneumoniae clones in Spain. J Antimicrob Chemother 65:1608–14. doi:10.1093/jac/dkq174

    Article  CAS  PubMed  Google Scholar 

  26. Tato M, Coque TM, Ruíz-Garbajosa P, Pintado V, Cobo J, Sader HS et al (2007) Complex clonal and plasmid epidemiology in the first outbreak of Enterobacteriaceae infection involving VIM-1 metallo-beta-lactamase in Spain: toward endemicity? Clin Infect Dis 45:1171–8. doi:10.1086/522288

    Article  CAS  PubMed  Google Scholar 

  27. Ruiz-Garbajosa P, Curiao T, Tato M, Gijón D, Pintado V, Valverde A et al (2013) Multiclonal dispersal of KPC genes following the emergence of non-ST258 KPC-producing Klebsiella pneumoniae clones in Madrid, Spain. J Antimicrob Chemother 68:2487–92. doi:10.1093/jac/dkt237

    Article  CAS  PubMed  Google Scholar 

  28. Barker M, Rayens W (2003) Partial least squares for discrimination. J Chemometrics 17:166–73. doi:10.1002/cem.785

    Article  CAS  Google Scholar 

  29. Ryzhov V, Fenselau C (2001) Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem 73:746–50. doi:10.1021/ac0008791

    Article  CAS  PubMed  Google Scholar 

  30. Fagerquist CK, Garbus BR, Miller WG, Williams KE, Yee E, Bates AH et al (2010) Rapid identification of protein biomarkers of Escherichia coli O157:H7 by matrix-assisted laser desorption ionization-time-of-flight-time-of-flight mass spectrometry and top-down proteomics. Anal Chem 82:2717–25. doi:10.1021/ac902455d

    Article  CAS  PubMed  Google Scholar 

  31. Yutin N, Puigbò P, Koonin EV, Wolf YI (2012) Phylogenomics of prokaryotic ribosomal proteins. PLoS One 7:e36972. doi:10.1371/journal.pone.0036972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suarez S, Ferroni A, Lotz A, Jolley KA, Guérin P, Leto J et al (2013) Ribosomal proteins as biomarkers for bacterial identification by mass spectrometry in the clinical microbiology laboratory. J Microbiol Methods 94:390–6. doi:10.1016/j.mimet.2013.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Teramoto K, Sato H, Sun L, Torimura M, Tao H, Yoshikawa H et al (2007) Phylogenetic classification of Pseudomonas putida strains by MALDI-MS using ribosomal subunit proteins as biomarkers. Anal Chem 79:8712–9. doi:10.1021/ac701905r

    Article  CAS  PubMed  Google Scholar 

  34. Sauget M, Nicolas-Chanoine MH, Cabrolier N, Bertrand X, Hocquet D (2014) Matrix-assisted laser desorption ionization-time of flight mass spectrometry assigns Escherichia coli to the phylogroups A, B1, B2 and D. Int J Med Microbiol 304:977–83. doi:10.1016/j.ijmm.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  35. Nakamura A, Komatsu M, Kondo A, Ohno Y, Kohno H, Nakamura F et al (2015) Rapid detection of B2-ST131 clonal group of extended-spectrum β-lactamase-producing Escherichia coli by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry: discovery of a peculiar amino acid substitution in B2-ST131 clonal group. Diagn Microbiol Infect Dis 83:237–44. doi:10.1016/j.diagmicrobio.2015.06.024

    Article  CAS  PubMed  Google Scholar 

  36. Clegg S, Murphy CN (2016) Epidemiology and virulence of Klebsiella pneumoniae. Microbiol Spectr 4. doi: 10.1128/microbiolspec.UTI-0005-2012

  37. Hansen DS, Mestre F, Alberti S, Hernández-Allés S, Alvarez D, Doménech-Sánchez A et al (1999) Klebsiella pneumoniae lipopolysaccharide O typing: revision of prototype strains and O-group distribution among clinical isolates from different sources and countries. J Clin Microbiol 37:56–62

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Månsson V, Resman F, Kostrzewa M, Nilson B, Riesbeck K (2015) Identification of Haemophilus influenzae type b isolates by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 53:2215–24. doi:10.1128/JCM.00137-15

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nakano S, Matsumura Y, Ito Y, Fujisawa T, Chang B, Suga S et al (2015) Development and evaluation of MALDI-TOF MS-based serotyping for Streptococcus pneumoniae. Eur J Clin Microbiol Infect Dis 34:2191–8. doi:10.1007/s10096-015-2468-9

    Article  CAS  PubMed  Google Scholar 

  40. Aanensen DM, Feil EJ, Holden MTG, Dordel J, Yeats CA, Fedosejev A et al (2016) Whole-genome sequencing for routine pathogen surveillance in public health: a population snapshot of invasive Staphylococcus aureus in Europe. MBio 7:e00444–16. doi:10.1128/mBio.00444-16

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author’s contributions

C.R., A.N. and L.P. contributed to the study design. C.R. performed the experimental work related to the acquisition of mass spectra in MALDI-TOF MS, performed chemometric analysis and wrote the manuscript. A.N. participated in data analysis and wrote the manuscript. C.S. and J.A.L. provided expertise in chemometric analysis, participated in the analysis of data, and the revision of the manuscript. H.R. provided access to the MALDI-TOF MS (Bruker Daltonics, Bremen, Germany) equipment, reagents and software, and part of the Portuguese strain collection. T.M.C. and R.C. provided the Spanish strain collection used in this study, expertise and participated in the revision of the manuscript. L.P. contributed for the general conceptualization of the study and methodological approach, the analysis of data and revision of the manuscript. All authors read and approved the final version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Peixe.

Ethics declarations

Funding

This work received financial support from the European Union (FEDER funds) through Programa Operacional Factores de Competitividade—COMPETE and Portuguese National Funds (FCT, Fundação para a Ciência e Tecnologia) (UID/Multi/04378/2013). Carla Rodrigues and Ângela Novais were supported by fellowships from FCT through Programa Operacional Capital Humano (POCH) (grants number SFRH/BD/84341/2012 and SFRH/BPD/104927/2014, respectively). Spanish isolates were recovered during execution of grants founded by the European Commission (TROCAR-FP7-HEALTH-F3-2008-223031 and, R-GNOSIS-FP7-HEALTH-F3-2011-282512) and the Instituto de Salud Carlos III of Spain (REIPI RD12/0015, Spanish Network for Research in Infectious Diseases) co-financed by the European Development Regional Fund, A Way to Achieve Europe.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1901 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, C., Novais, Â., Sousa, C. et al. Elucidating constraints for differentiation of major human Klebsiella pneumoniae clones using MALDI-TOF MS. Eur J Clin Microbiol Infect Dis 36, 379–386 (2017). https://doi.org/10.1007/s10096-016-2812-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2812-8

Keywords

Navigation