Skip to main content
Log in

Empirical monotherapy with meropenem or combination therapy: the microbiological point of view

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The increase in the number of clinical isolates of multiresistant Enterobacteriaceae and Pseudomonas aeruginosa raises problems in decision-making on empirical treatments for severe Gram-negative bacilli-associated infections. The aim of our study is to determine the resistance of meropenem in our setting and the co-resistance of a combination of this compound with two antibiotics from different families: amikacin and ciprofloxacin. Between 2009 and 2013, a total of 81,310 clinical isolates belonging to the main species of Enterobacteriaceae and 39,191 clinical isolates of P. aeruginosa isolated in 28 hospitals in the Valencian Community on the South East Mediterranean Coast of Spain were analyzed using data provided by RedMiva (microbiological surveillance network of the Valencian Community). Meropenem resistance in Enterobacteriaceae increased from 0.16 % in 2009 to 1.25 % in 2013. Very few Enterobacteriaceae strains resistant to meropenem were sensitive to ciprofloxacin; in contrast, the combination of meropenem and amikacin led to a marked decrease in the risk of the microorganisms being resistant to both drugs (RR = 34 in 2013). In the case of P. aeruginosa, meropenem resistance also increased (from 14.32 % in 2009 to 24.52 % in 2013). Most meropenem-resistant P. aeruginosa isolates were also resistant to fluoroquinolones. However, the addition of amikacin led to a more than three-fold decrease in the risk of resistance. In our setting, empirical treatment with meropenem is adequate in enterobacterial infections, but poses difficulties when infection due to P. aeruginosa is suspected, in which case a combination of meropenem and amikacin has been shown to have a higher microbiological success rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kumar A, Roberts D, Wood KE et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34:1589–1596

    Article  PubMed  Google Scholar 

  2. Dantas RC, Ferreira ML, Gontijo-Filho PP et al (2014) Pseudomonas aeruginosa bacteraemia: independent risk factors for mortality and impact of resistance on outcome. J Med Microbiol 63:1679–1687

    Article  PubMed  Google Scholar 

  3. Muñoz I, Vanaclocha H, González F (2007) The importance of microbiological surveillance networks in monitoring resistant bacteria. RedMIVA. Rev Esp Quimioter 20:193–202

    PubMed  Google Scholar 

  4. European Centre for Disease Prevention and Control. EARSS Annual Report of antimicrobial resistance surveillance in Europe. http://ecdc.europa.eu/en/publications/surveillance_reports

  5. Retamar P, Luisa Martín M, Molina J et al (2013) Evaluating the quality of antimicrobial prescribing: is standardisation possible? Enferm Infecc Microbiol Clin 31 [Suppl 4]:25–30

    Article  PubMed  Google Scholar 

  6. Calbo E, Alvarez-Rocha L, Gudiol F et al (2013) A review of the factors influencing antimicrobial prescribing. Enferm Infecc Microbiol Clin 31 [Suppl 4]:12–15

    Article  PubMed  Google Scholar 

  7. Yokota PK, Marra AR, Martino MD et al (2014) Impact of appropriate antimicrobial therapy for patients with severe sepsis and septic shock—a quality improvement study. PLoS One 9, e104475

    Article  PubMed  PubMed Central  Google Scholar 

  8. Faine BA, Harland KK, Porter B et al (2015) A clinical decision rule identifies risk factors associated with antimicrobial-resistant urinary pathogens in the emergency department: a retrospective validation study. Ann Pharmacother 49:649–655

    Article  PubMed  Google Scholar 

  9. Bielicki JA, Lundin R, Sharland M, ARPEC Project (2015) Antibiotic resistance prevalence in routine bloodstream isolates from children’s hospitals varies substantially from adult surveillance data in Europe. Pediatr Infect Dis J 34:734–741

    Article  PubMed  Google Scholar 

  10. Tängdén T, Giske CG (2015) Global dissemination of extensively drug-resistant carbapenemase-producing Enterobacteriaceae: clinical perspectives on detection, treatment and infection control. J Intern Med 277:501–512

    Article  PubMed  Google Scholar 

  11. Holt KE, Wertheim H, Zadoks RN et al (2015) Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc Natl Acad Sci U S A 112:E3574–E3581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tumbarello M, Trecarichi EM, De Rosa FG et al (2015) Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother 70:2133–2143

    Article  CAS  PubMed  Google Scholar 

  13. Bassetti M, De Waele JJ, Eggimann P et al (2015) Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria. Intensive Care Med 41:776–795

    Article  CAS  PubMed  Google Scholar 

  14. Brigmon MM, Bookstaver PB, Kohn J et al (2015) Impact of fluoroquinolone resistance in Gram-negative bloodstream infections on healthcare utilization. Rapid nucleic acid diagnostics for the detection of antimicrobial resistance in Gram-negative bacteria: is it time for a paradigm shift? Clin Microbiol Infect 21:843–849

    Article  CAS  PubMed  Google Scholar 

  15. Oteo J, Saez D, Bautista V, Fernández-Romero S, Hernández-Molina JM, Pérez-Vázquez M, Aracil B, Campos J, Spanish Collaborating Group for the Antibiotic Resistance Surveillance Program (2013) Carbapenemase-producing enterobacteriaceae in Spain in 2012. Antimicrob Agents Chemother 57:6344–6347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartlett JG, Gilbert DN, Spellberg B (2013) Seven ways to preserve the miracle of antibiotics. Clin Infect Dis 56:1445–1450

    Article  CAS  PubMed  Google Scholar 

  17. Tuite N, Reddington K, Barry T, Zumla A, Enne V (2014) Rapid nucleic acid diagnostics for the detection of antimicrobial resistance in Gram-negative bacteria: is it time for a paradigm shift? J Antimicrob Chemother 69:1729–1733

    Article  CAS  PubMed  Google Scholar 

  18. Kuehn BM (2013) IDSA: better, faster diagnostics for infectious diseases needed to curb overtreatment, antibiotic resistance. JAMA 310:2385–2386

    Article  CAS  PubMed  Google Scholar 

  19. Maruyama T, Fujisawa T, Okuno M, Toyoshima H, Tsutsui K, Maeda H, Yuda H, Yoshida M, Kobayashi H, Taguchi O, Gabazza EC, Takei Y, Miyashita N, Ihara T, Brito V, Niederman MS (2013) A new strategy for healthcare-associated pneumonia: a 2-year prospective multicenter cohort study using risk factors for multidrug-resistant pathogens to select initial empiric therapy. Clin Infect Dis 57:1373–1383

    Article  CAS  PubMed  Google Scholar 

  20. Bass SN, Bauer SR, Neuner EA, Lam SW (2015) Impact of combination antimicrobial therapy on mortality risk for critically ill patients with carbapenem-resistant bacteremia. Antimicrob Agents Chemother 59:3748–3753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kmeid JG, Youssef MM, Kanafani ZA, Kanj SS (2013) Combination therapy for Gram-negative bacteria: what is the evidence? Expert Rev Anti Infect Ther 11:1355–1362

    Article  CAS  PubMed  Google Scholar 

  22. Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS (2014) Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother 58:654–663

    Article  PubMed  PubMed Central  Google Scholar 

  23. Viale P, Giannella M, Tedeschi S, Lewis R (2015) Treatment of MDR-Gram negative infections in the 21st century: a never ending threat for clinicians. Curr Opin Pharmacol 24:30–37

    Article  CAS  PubMed  Google Scholar 

  24. Hsu AJ, Carroll KC, Milstone AM, Avdic E, Cosgrove SE, Vilasoa M, Tamma PD (2015) The use of a combination antibiogram to assist with the selection of appropriate antimicrobial therapy for carbapenemase-producing enterobacteriaceae infections. Infect Control Hosp Epidemiol 36:1458–1460

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Rodríguez.

Ethics declarations

Funding

This study was supported by a grant of the Hospital General Universitario de Alicante (UGP-14-270) and Fundación Francisco Soria Melguizo.

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcinuño, P., Santibañez, M., Gimeno, L. et al. Empirical monotherapy with meropenem or combination therapy: the microbiological point of view. Eur J Clin Microbiol Infect Dis 35, 1851–1855 (2016). https://doi.org/10.1007/s10096-016-2737-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2737-2

Keywords

Navigation