Skip to main content
Log in

No global increase in resistance to antibiotics: a snapshot of resistance from 2001 to 2016 in Marseille, France

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Since effective empirical antibiotic therapy is a key factor for survival, local antibiotic resistance epidemiology is critical. We aimed to identify current trends in antibiotic resistance for key antibiotics obtained over 16 years (2001–2016) for invasive infections corresponding to empirical treatment in a large hospital centre in Marseille, France.

From January 2014 to December 2016, we have collected all data on antibiotic susceptibility from public laboratory hospitals, and a retrospective analysis was performed on key antibiotics in blood cultures since 2001. A total of 99,932 antibiotic susceptibility testings (ASTs) were analysed, and proportion of pan-drug resistant (PDR = resistant to all antibiotics tested) and extensively drug-resistant (XDR = resistant to all except for two classes) strains were < 0.03 and 0.5%, respectively. Between 2001 and 2016, we found an increase of resistance to third-generation cephalosporins for E. coli invasive strains (0% vs 17.8%; p < 10−5) and K. pneumoniae (8% vs 35.4%; p = 0.001) along with a decrease of methicillin-resistant S. aureus strains (31% vs 19.8%; p = 0.006). Moreover, during the 3-year period, a significant increase of wild-type strains, susceptible to all antibiotics tested, was observed in invasive infections. Regarding bacteraemia involving Enterobacteriaceae and S. aureus, empirical therapy is effective in > 99% cases. Active epidemiological surveillance is necessary because antibiotic resistance remains unpredictable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hall BG, Salipante SJ, Barlow M (2004) Independent origins of subgroup Bl + B2 and subgroup B3 metallo-beta-lactamases. J Mol Evol 59:133–141

    Article  CAS  PubMed  Google Scholar 

  2. Rolain J-M (2013) Food and human gut as reservoirs of transferable antibiotic resistance encoding genes. Front Microbiol 4:173

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rolain J-M, Abat C, Jimeno M-T, Fournier P-E, Raoult D (2016) Do we need new antibiotics? Clin Microbiol Infect 22:408–415

    Article  PubMed  Google Scholar 

  4. O’Neil (2014) Antimicrobial resistance: tackling a crisis for the health and wealth of nations. London: Review on Antimicrobial Resistance; Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf. Accessed 17 Aug 2017

  5. de Kraker MEA, Stewardson AJ, Harbarth S (2016) Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med 13:e1002184

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abat C, Rolain J-M, Dubourg G, Fournier P-E, Raoult D (2017) Evaluating the clinical burden and mortality attributable to antibiotic resistance: the disparity of empirical data and simple model estimations. Clin Infect Dis 15:65

    Google Scholar 

  7. Cassini A, Högberg LD, Plachouras D et al (2018) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis S1473-3099(18):30605–30604

    Google Scholar 

  8. Raoult D (2016) Alice’s living croquet theory. Int J Antimicrob Agents 47:249

    Article  CAS  PubMed  Google Scholar 

  9. Harris PNA, Tambyah PA, Paterson DL (2015) β-Lactam and β-lactamase inhibitor combinations in the treatment of extended-spectrum β-lactamase producing Enterobacteriaceae: time for a reappraisal in the era of few antibiotic options? Lancet Infect Dis 15:475–485

    Article  CAS  PubMed  Google Scholar 

  10. Nordmann P, Naas T, Poirel L (2011) Global spread of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rolain JM, Parola P, Cornaglia G (2010) New Delhi metallo-beta-lactamase (NDM-1): towards a new pandemia? Clin Microbiol Infect 16:1699–1701

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y-Y, Wang Y, Walsh TR et al (2015) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168

    Article  CAS  PubMed  Google Scholar 

  13. Rolain JM, Abat C, Brouqui P, Raoult D (2015) Worldwide decrease in methicillin-resistant Staphylococcus aureus: do we understand something? Clin Microbiol Infect 6:515–517

    Article  Google Scholar 

  14. Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 3:268–281

    Article  Google Scholar 

  15. Mendelson M, Balasegaram M, Jinks T, Pulcini C, Sharland M (2017) Antibiotic resistance has a language problem. Nature 545:23–25

    Article  CAS  PubMed  Google Scholar 

  16. Diene SM, Abat C, Rolain J-M, Raoult D (2017) How artificial is the antibiotic resistance definition? Lancet Infect Dis 17:690

    Article  PubMed  Google Scholar 

  17. Abat C, Chaudet H, Colson P, Rolain J-M, Raoult D (2015) Real-time microbiology laboratory surveillance system to detect abnormal events and emerging infections, Marseille, France. Emerg Infect Dis 21:1302–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huart M, Bedubourg G, Abat C et al (2017) Implementation and initial analysis of a laboratory-based weekly biosurveillance system, Provence-Alpes-Côte d’Azur, France. Emerg Infect Dis 23:582–589

    Article  PubMed  PubMed Central  Google Scholar 

  19. Seng P, Rolain J-M, Fournier PE, La Scola B, Drancourt M, Raoult D (2010) MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 5:1733–1754

    Article  CAS  PubMed  Google Scholar 

  20. The European Commitee on Antimicrobial Susceptibility Testing EUCAST Disk Diffusion Test Manual. Breakpoint tables for interpretation of MICs and zone diameters. Version 5.0, 2015. Available at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_5.0_Breakpoint_Table_01.pdf. Accessed 17 Aug 2017

  21. Bakour S, Garcia V, Loucif L et al (2015) Rapid identification of carbapenemase-producing Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii using a modified Carba NP test. New Microbes New Infect 7:89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Matuschek E, Brown DFJ, Kahlmeter G (2014) Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect 20:O255–O266

    Article  CAS  PubMed  Google Scholar 

  23. Falagas ME, Tansarli GS, Karageorgopoulos DE, Vardakas KZ (2014) Deaths attributable to Carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis 20:1170–1175

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nordmann P, Poirel L (2014) The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin Microbiol Infect 20:821–830

    Article  CAS  PubMed  Google Scholar 

  25. Dubourg G, Okdah L, Le Page S, Rolain J-M, Raoult D (2015) In vitro activity of ‘old antibiotics’ against highly resistant Gram-negative bacteria. Int J Antimicrob Agents 46:718–720

    Article  CAS  PubMed  Google Scholar 

  26. Bollestad M, Grude N, Solhaug S et al (2018) Clinical and bacteriological efficacy of pivmecillinam treatment for uncomplicated urinary tract infections caused by ESBL-producing Escherichia coli: a prospective, multicentre, observational cohort study. J Antimicrob Chemother 73(9):2503–2509

    Article  CAS  PubMed  Google Scholar 

  27. Tenover FC, Canton R, Kop J, et al (2013). Detection of colonization by carbapenemase-producing Gram-negative Bacilli in patients by use of the Xpert MDRO assay. J Clin Microbiol 51: 3780–3787

  28. Dubourg G, Lamy B, Ruimy R (2018) Rapid phenotypic methods to improve the diagnosis of bacterial bloodstream infections: meeting the challenge to reduce the time to result. Clin Microbiol Infect 9:935–943

    Article  CAS  Google Scholar 

  29. Le Page S, Raoult D, Rolain J-M (2015) Real-time video imaging as a new and rapid tool for antibiotic susceptibility testing by the disc diffusion method: a paradigm for evaluating resistance to imipenem and identifying extended-spectrum β-lactamases. Int J Antimicrob Agents 45:61–65

    Article  CAS  PubMed  Google Scholar 

  30. Pulcini C, Mohrs S, Beovic B et al (2017) Forgotten antibiotics: a follow-up inventory study in Europe, the USA, Canada and Australia. Int J Antimicrob Agents 49:98–101

    Article  CAS  PubMed  Google Scholar 

  31. Levasseur A, Bekliz M, Chabrière E, Pontarotti P, La Scola B, Raoult D (2016) MIMIVIRE is a defence system in mimivirus that confers resistance to virophage. Nature 531:249–252

    Article  CAS  PubMed  Google Scholar 

  32. Abat C, Fournier PE, Jimeno MT, Rolain JM, Raoult D (2018) Extremely and pandrug-resistant bacteria extra-deaths: myth or reality? Eur J Clin Microbiol Infect Dis 37(9):1687–1697

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to IHU Méditerranée Infection and AJE for English corrections.

Funding

This work has benefited from French State support managed by the “Agence Nationale pour la Recherche,” including the “Programme d’Investissement d’avenir” under the reference Méditerranée Infection 10-IAHU-03. This work was also supported by Région Provence Alpes Côte d’Azur and Fonds Européen de Développement Regional—Plateformes de Recherche et d’Innovation Mutualisées Méditerranée Infection (FEDER PRIMI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Raoult.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

Critical diameters used for AST in this study. (DOCX 16 kb)

Table S2

Presentation of the different bacterial species for which an AST was performed with prevalence. (DOCX 43 kb)

Table S3

Presentation of the percentage of resistance to all antibiotics tested for blood samples and other samples between 2014 and 2016 for the 10 most common Gram-negative bacteria. (DOCX 54 kb)

Table S4

Presentation of the percentage of resistance to all antibiotics tested for blood samples and other samples between 2014 and 2016 for the 10 most common Gram-positive bacteria. (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Page, S., Dubourg, G., Baron, S.A. et al. No global increase in resistance to antibiotics: a snapshot of resistance from 2001 to 2016 in Marseille, France. Eur J Clin Microbiol Infect Dis 38, 395–407 (2019). https://doi.org/10.1007/s10096-018-3439-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-018-3439-8

Keywords

Navigation