Skip to main content

Advertisement

Log in

Emergence of co-production of plasmid-mediated AmpC beta-lactamase and ESBL in cefoxitin-resistant uropathogenic Escherichia coli

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Plasmid-mediated AmpC (pAmpC) and ESBL co-production was detected in Escherichia coli a major etiologic agent of urinary tract infection. Isolates resistant to cefoxitin by CLSI methodology were tested for pAmpC beta-lactamase using phenylboronic acid and ESBLs by combined disk diffusion method. pAmpC/ESBL genes were characterized by PCR and sequencing. Transconjugation experiments were done to study the transfer of pAmpC and ESBL production from clinical isolates as donor to E. coli J53 AziR as recipient. Incompatibility groups of transmissible plasmids were classified by PCR-based replicon typing (PBRT). Among 148 urine culture positive isolates, E. coli was reported in 39.86 % (59/148), with 93.22 % (55/59) of cefoxitin resistance. pAmpC production was detected in 25, with varied distribution of blaCMY-2 and blaDHA-1type genes alone (n = 13 and 7 respectively) or in combination (n = 5). ESBL co-production was observed in 88 % (22/25) of pAmpC producing isolates with predominance of blaTEM (n = 20). Twenty-three transconjugants showed transmission of pAmpC-and ESBL-resistant genes with co-carriage of blaCMY-2 and blaTEM (n = 15) in plasmids of IncF type (n = 9) being predominant, followed by IncI1 (n = 4) and IncH1 (n = 2) in combination. All clinical isolates were clonally diverse. Resistance against different beta-lactams in uropathogenic E. coli has been an emerging concern in resource- poor countries such as India. Knowledge on the occurrence of AmpC beta-lactamases and ESBL amongst this pathogen and its transmission dynamics may aid in hospital infection control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akram M, Shahid M, Khan AU (2007) Etiology and antibiotic resistance pattern of community-acquired urinary tract infection in JNMC Hospital Aligarh India. Ann Clin Microbiol Antimicrob 6:4–10

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nicolle LE (2007) Uncomplicated urinary tract infection in adults including uncomplicated pyelonephritis. Urol Clin N Am 35(1):1–12

    Article  Google Scholar 

  3. Gales AC, Jones RN, Gordon KA et al (2000) Activity and spectrum of 22 antimicrobial agents tested against urinary tract pathogens in hospitalised patients in Latin America: report from the second year of the SENTRY Antimicrobial Surveillance Program (1998). J Antimicrob Chemother 45:295–303

    Article  CAS  PubMed  Google Scholar 

  4. Gupta K, Sahm DF, Mayfield D et al (2001) Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in women: a nationwide analysis. Clin Infect Dis 33:89–94

    Article  CAS  PubMed  Google Scholar 

  5. Pérez-Pérez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40(6):2153–2162

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mammeri H, Nazic H, Naas T et al (2004) AmpC β-Lactamase in an Escherichia coli Clinical isolate confers resistance to expanded-spectrum cephalosporins. Antimicrob Agents Chemother 48(10):4050–4053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taneja N, Rao P, Arora J et al (2008) Occurrence of ESBL & Amp-C β-lactamases and susceptibility to newer antimicrobial agents in complicated UTI. Indian J Med Res 127:85–88

    PubMed  Google Scholar 

  8. Manoharan A, Sugumar M, Kumar A et al (2012) Phenotypic and molecular characterization of AmpC βlactamases among Escherichia coli Klebsiella spp & Enterobacter spp from five Indian medical centers. Indian J Med Res 135:359–364

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohamudha PR, Harish BN, Parija SC (2012) Molecular description of plasmid-mediated AmpC β-lactamases among nosocomial isolates of Escherichia coli & Klebsiella pneumoniae from six different hospitals in India. Indian J Med Res 135:114–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chakraborty A, Adhikari P, Shenoy S et al (2014) Characterization of Plasmid mediated AmpC producing Escherechia coli clinical isolates from tertiary care hospital in South India. Indian J Pathol Microbiol 57(2):255–258

    Article  PubMed  Google Scholar 

  11. Haenni M, Châtre P, Madec JY (2014) Emergence of Escherichiacoli producing extended-spectrum AmpCβ-lactamases(ESAC)in animals. Frontiers Microbiol 5(53):1–7

    Google Scholar 

  12. Thomson KS (2001) Controversies about extended-spectrum and AmpC β-lactamases. Emerg Infect Dis 7:333–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pfeifer Y, Cullik A, Witte W (2010) Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol 300:371–379

    Article  CAS  PubMed  Google Scholar 

  14. Swaminathan B, Barrett T, Hunter SB et al (2001) The molecular subtyping network for foodborne disease surveillance in the United States. Emerg Infect Dis 7:382–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hanson ND (2003) AmpC β-lactamases: what do we need to know for the future? J Antimicrob Chemother 52:2–4

    Article  CAS  PubMed  Google Scholar 

  16. Papanicolaou GA, Medeiros AA, Jacoby GA (1990) Novel plasmid mediated β-lactamases(MIR-1) conferring resistance to oxyimino and α methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob Agents Chemother 34:2200–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Black JA, Moland ES, Thomson KS (2005) AmpC disk test for detection of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal AmpC β –lactamases. J Clin Microbiol 43:3110–3113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Myer K (2001) Methods in biochemical identification of bacteria. Myer’s and Koshi’s manual of diagnostic procedures in medical microbiology and immunology/serology, 2nd ed. Department of Clinical Microbiology, Christian Medical College, Vellore, pp 195–202

    Google Scholar 

  19. CLSI; Clinical and Laboratory Standards Institute (2011) Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement. CLSI document M100-S21. Clinical and Laboratory Standards Institute, Wayne PA

    Google Scholar 

  20. Coudron PE (2005) Inhibitor-based methods for detection of plasmid-mediated AmpC beta-lactamases in Klebsiella spp., Escherichia coli and Proteus mirabilis. J Clin Microbiol 43:4163–4167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kado CI, Liu ST (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145(3):1365–1373

    CAS  PubMed  PubMed Central  Google Scholar 

  22. MendoncaN LD, Castro AP et al (2006) ctxm-15, oxa-30 and tem-1 producing Escherechia coli in two Portugese regions. J Antimicrob Chemother 57:1014–1016

    Article  Google Scholar 

  23. Carattoli A, Bertini A, Villa L et al (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228

    Article  CAS  PubMed  Google Scholar 

  24. Sasirekha B, Shivakumar S (2012) Occurrence of plasmid-mediated AmpC b-lactamases among Escherichia coli and Klebsiella pneumoniae clinical isolates in a tertiary care hospital in Bangalore. Indian J Microbiol 52(2):174–179

    Article  CAS  PubMed  Google Scholar 

  25. Dhanashree B, Mallya SP (2012) Molecular typing of enteropathogenic Escherichia coli from diarrheagenic stool samples. J Clin Diagn Res 6(3):400–404

    CAS  Google Scholar 

  26. Farshad S, Emamghorashi F (2009) The prevalence of virulence genes of E. coli strains isolated from children with urinary tract infection. Saudi J Kidney Dis Transpl 20:613–617

    PubMed  Google Scholar 

  27. Kaluzna M, Ferrante P, Sobiczewski P, Scortichini M (2010) Characterization and genetic diversity of pseudomonas syringae from stone fruits and hazelnut using repetitive-pcr and mlst. J Plant Pathol 92:781–787

    CAS  Google Scholar 

  28. Jacoby GA (2009) AmpC betalactamases. Clin Microbiol Rev 22(1):161–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Singhal S, Mathur T, Khan S et al (2005) Evaluation of methods for AmpC β-lactamase in Gram-negative clinical isolates from tertiary care hospitals. Indian J Med Microbiol 23:120–124

    Article  CAS  PubMed  Google Scholar 

  30. Gupta V (2007) An update on newer betalactamases. Indian J Med Res 126(5):417–427

    CAS  PubMed  Google Scholar 

  31. Ratna AK, Menon I, Kapur I et al (2003) Occurrence and detection of AmpC β-lactamases at a referral hospital in Karnataka. Indian J Med Res 118:29–32

    CAS  PubMed  Google Scholar 

  32. Hemalatha PM, Sekar U et al (2007) Detection of AmpC β-lactamases production in Escherichia coli and Klebsiella by an inhibitor based method. Indian J Med Res 126:220–223

    CAS  PubMed  Google Scholar 

  33. Arora S, Bal M (2005) AmpC b-lactamase producing bacterial isolates from Kolkata hospital. Indian J Med Res 122:224–233

    CAS  PubMed  Google Scholar 

  34. Mata C, Miró E, Alvarado A et al (2012) Plasmid typing and genetic context of AmpC βlactamases in Enterobacteriaceae lacking inducible chromosomal AmpC genes: findings from a Spanish hospital 1999–2007. J Antimicrob Chemother 67:115–122

    Article  CAS  PubMed  Google Scholar 

  35. Alonso N, Miro E, Pascual V et al (2016) Molecular characterisation of acquired and overproduced chromosomal blaAmpC in Escherichia coli clinical isolates. Int J Antimicrob Agents 47:62–68

    Article  CAS  PubMed  Google Scholar 

  36. Ahmed SF, Ali MMM, Mohamed ZK et al (2014) Fecal carriage of extended-spectrum β-lactamases and AmpC-producing Escherichia coli in a Libyan community. Ann Clin Microbiol Antimicrob 13:22

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sallem RB, Slama KB, Rojo-Bezares B et al (2014) IncI1 Plasmids carrying blaCTX-M-1 or blaCMY-2 genes in Escherichia coli from healthy humans and animals in Tunisia. Microb Drug Resist. doi:10.1089/mdr.2013.0224

    PubMed  Google Scholar 

  38. Galán-Sánchez F, Aznar-Marín P, Marín-Casanova P et al (2014) Diversity of bla genes and low incidence of CTX-M in plasmid-mediated AmpC-producing Escherichia coli clinical isolates. APMIS 122(9):796–799

    Article  PubMed  Google Scholar 

  39. Bajaj P, Singh NS, Kanaujia PK et al (2015) Distribution and molecular characterization of genes encoding CTX-M and AmpC β-lactamases in Escherichia coli isolated from an Indian urban aquatic environment. Sci Total Environ 505:350–356

    Article  CAS  PubMed  Google Scholar 

  40. Ibrahim DR, Dodd CE, Stekel DJ et al (2016) Multidrug resistant, extended spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from a dairy farm. FEMS Microbiol Ecol 92 10.1093/femsec/fiw01

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Professor Nandita Basu, Director, School of Tropical Medicine, Kolkata, West Bengal, India and Professor Bibhuti Saha, Head, Department of Tropical Medicine, School of Tropical Medicine, Kolkata, West Bengal, India for their kind support to successfully carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mukherjee.

Ethics declarations

Funding

There was no extramural funding support for this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study protocol was approved by the institutional ethical committee.

Informed consent

Informed consent was obtained from all individual participants included in the study

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 62 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, B., Mukherjee, M. Emergence of co-production of plasmid-mediated AmpC beta-lactamase and ESBL in cefoxitin-resistant uropathogenic Escherichia coli . Eur J Clin Microbiol Infect Dis 35, 1449–1454 (2016). https://doi.org/10.1007/s10096-016-2683-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2683-z

Keywords

Navigation