Skip to main content
Log in

Direct identification of major Gram-negative pathogens in respiratory specimens by respiFISH® HAP Gram (−) Panel, a beacon-based FISH methodology

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Rapid detection of microorganisms in respiratory specimens is of paramount importance to drive the proper antibiotic regimen to prevent complications and transmission of infections. In the present study, the respiFISH® HAP Gram (−) Panel (miacom diagnostics GmbH, Duesseldorf, Germany) for the etiological diagnosis of hospital-acquired pneumonia was compared with the traditional culture method for the detection of major Gram-negative pathogens in respiratory specimens. respiFISH® combined the classical fluorescence in situ hybridization (FISH) technology with fluorescence-labeled DNA molecular beacons as probes. From September 2011 to January 2012, 165 samples were analyzed: the sensitivity and specificity were 94.39 and 87.93 %, respectively. Only six pathogens (3.6 %) were not identified with respiFISH®, while seven specimens (3 %) provided false-positive results. This beacon-based identification shortens the time to result by at least one work day, providing species-level identification within half an hour. Considering the high sensitivity and specificity and the significant time saving, the introduction of bbFISH® assays could effectively complement traditional systems in microbiology laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bbFISH®:

Beacon-based fluorescence in situ hybridization

HAP:

Hospital-acquired pneumonia

VAP:

Ventilation-acquired pneumonia

TAT:

Total turn-around time

CNA:

Columbia nalidixic acid agar

BAL:

Bronchoalveolar lavage

PPV:

Positive predictive value

NPV:

Negative predictive value

PCR:

Polymerase chain reaction

IC:

Interval confidence

References

  1. Yoon YS (2012) Respiratory review of 2012: pneumonia. Tuberc Respir Dis (Seoul) 73:77–83

    Article  Google Scholar 

  2. Park DR (2005) The microbiology of ventilator-associated pneumonia. Respir Care 50(6):742–765

    PubMed  Google Scholar 

  3. Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 167(7):867–903

    Article  Google Scholar 

  4. Barbier F, Andremont A, Wolff M, Bouadma L (2013) Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management. Curr Opin Pulm Med 19(3):216–228

    Article  PubMed  Google Scholar 

  5. Stefani S (2009) Diagnostic techniques in bloodstream infections: where are we going? Int J Antimicrob Agents 34:S9–S12

    Article  CAS  PubMed  Google Scholar 

  6. Moter A, Göbel UB (2000) Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J Microbiol Methods 41:85–112

    Article  CAS  PubMed  Google Scholar 

  7. Sakarikou C, Parisato M, Lo Cascio G, Fontana C (2014) Beacon-based (bbFISH®) technology for rapid pathogens identification in blood culture. BMC Microbiol 14:99

    Article  PubMed Central  PubMed  Google Scholar 

  8. Mallmann C, Siemoneit S, Schmiedel D, Petrich A, Gescher DM, Halle E, Musci M, Hetzer R, Göbel UB, Moter A (2010) Fluorescence in situ hybridization to improve the diagnosis of endocarditis: a pilot study. Clin Microbiol Infect 16:767–773

    Article  CAS  PubMed  Google Scholar 

  9. Goddard KA, Townsend R, Ridgway E (2007) Rapid diagnosis of intrapartum group B streptococcal carriage by fluorescent in situ hybridisation. J Clin Pathol 60:842–843

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Poppert S, Essig A, Stoehr B, Steingruber A, Wirths B, Juretschko S, Reischl U, Wellinghausen N (2005) Rapid diagnosis of bacterial meningitis by real-time PCR and fluorescence in situ hybridization. J Clin Microbiol 43:3390–3397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Murray PR, Washington JA (1975) Microscopic and baceriologic analysis of expectorated sputum. Mayo Clin Proc 50(6):339–344

    CAS  PubMed  Google Scholar 

  13. Hawkins RC (2007) Laboratory turnaround time. Clin Biochem Rev 28:179–194

    PubMed Central  PubMed  Google Scholar 

  14. Hilborne LH, Oye RK, McArdle JE, Repinski JA, Rodgerson DO (1989) Evaluation of stat and routine turnaround times as a component of laboratory quality. Am J Clin Pathol 91(3):331–335

    CAS  PubMed  Google Scholar 

  15. Steindel SJ, Howanitz PJ (2001) Physician satisfaction and emergency department laboratory test turnaround time. Arch Pathol Lab Med 125:863–871

    CAS  PubMed  Google Scholar 

  16. Valenstein P (1996) Laboratory turnaround time. Am J Clin Pathol 105:676–688

    CAS  PubMed  Google Scholar 

  17. Valenstein PN, Emancipator K (1989) Sensitivity, specificity, and reproducibility of four measures of laboratory turnaround time. Am J Clin Pathol 91:452–457

    CAS  PubMed  Google Scholar 

  18. Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13(9):785–796

    Article  PubMed  Google Scholar 

  19. Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (eds) (2011) Manual of clinical microbiology, 10th edn. ASM Press, Washington DC

    Google Scholar 

Download references

Conflict of interest

All co-authors have no specific conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Koncan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koncan, R., Parisato, M., Sakarikou, C. et al. Direct identification of major Gram-negative pathogens in respiratory specimens by respiFISH® HAP Gram (−) Panel, a beacon-based FISH methodology. Eur J Clin Microbiol Infect Dis 34, 2097–2102 (2015). https://doi.org/10.1007/s10096-015-2458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2458-y

Keywords

Navigation