Skip to main content

Advertisement

Log in

The effect of conventional mechanical periodontal treatment on red complex microorganisms and clinical parameters in Down syndrome periodontitis patients: a pilot study

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Periodontal disease (PD) is induced by a complex microbiota, such as Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola (together called the red complex), which triggers intense inflammatory reaction. Down syndrome (DS) individuals demonstrate a high prevalence of PD compared with those who are otherwise chromosomally normal (euploids). This pilot study aimed to evaluate the effect of non-surgical periodontal treatment in DS chronic periodontitis patients on clinical and microbiological parameters. Patients with chronic periodontitis, 23 DS and 12 euploids (control group), were submitted to non-surgical mechanical periodontal treatment, followed by maintenance for 45 days. Clinical parameters after periodontal treatment were similar in diseased and healthy sites, independent of the genetic background. Diseased sites of DS and control patients harbored similar levels of P. gingivalis and T. forsythia at baseline, but significantly higher levels of T. denticola were found in DS patients. Increased levels of P. gingivalis at healthy sites were found in DS individuals. Non-surgical periodontal therapy decreased the levels of red complex microorganisms and improved the tested clinical parameters of diseased sites in both groups. However, the levels of red complex bacteria were higher in diseased sites of DS patients after the periodontal treatment. We conclude in this pilot study that, although the mechanical periodontal treatment seemed to be effective in DS subjects over a short-term period, the red complex bacteria levels did not decrease significantly in diseased sites, as occurred in controls. Therefore, for DS patients, it seems that the conventional non-surgical periodontal therapy should be improved by utilizing adjuvants to reduce the presence of periodontopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Byrne SJ, Dashper SG, Darby IB, Adams GG, Hoffmann B, Reynolds EC (2009) Progression of chronic periodontitis can be predicted by the levels of Porphyromonas gingivalis and Treponema denticola in subgingival plaque. Oral Microbiol Immunol 24(6):469–477. doi:10.1111/j.1399-302X.2009.00544.x

    Article  CAS  PubMed  Google Scholar 

  2. Garlet GP (2010) Destructive and protective roles of cytokines in periodontitis: a re-appraisal from host defense and tissue destruction viewpoints. J Dent Res 89(12):1349–1363. doi:10.1177/0022034510376402

    Article  CAS  PubMed  Google Scholar 

  3. Feng Z, Weinberg A (2000) Role of bacteria in health and disease of periodontal tissues. Periodontol 2000 40:50–76. doi:10.1111/j.1600-0757.2005.00148.x

    Article  Google Scholar 

  4. Haffajee AD, Socransky SS (2000) Microbial etiological agents of destructive periodontal diseases. Periodontol 2000 5:78–111

    Article  Google Scholar 

  5. Wade WG (2011) Has the use of molecular methods for the characterization of the human oral microbiome changed our understanding of the role of bacteria in the pathogenesis of periodontal disease? J Clin Periodontol 38(Suppl 11):7–16. doi:10.1111/j.1600-051X.2010.01679.x

    Article  PubMed  Google Scholar 

  6. Finoti LS, Corbi SC, Anovazzi G, Teixeira SR, Capela MV, Tanaka MH, Kim YJ, Orrico SR, Cirelli JA, Mayer MP, Scarel-Caminaga RM (2013) Pathogen levels and clinical response to periodontal treatment in patients with Interleukin 8 haplotypes. Pathog Dis. doi:10.1111/2049-632X.12062

    PubMed  Google Scholar 

  7. Kornman KS, Crane A, Wang HY, di Giovine FS, Newman MG, Pirk FW, Wilson TG Jr, Higginbottom FL, Duff GW (1997) The interleukin-1 genotype as a severity factor in adult periodontal disease. J Clin Periodontol 24(1):72–77

    Article  CAS  PubMed  Google Scholar 

  8. Corbi SC, Finoti LS, Anovazzi G, Tanaka MH, Kim YJ, Secolin R, Marcaccini AM, Gerlach RF, Orrico SR, Cirelli JA, Scarel-Caminaga RM (2014) Clinical outcomes of periodontal therapy are not influenced by the ATC/TTC haplotype in the IL8 gene. J Periodontal Res 49(4):489–498. doi:10.1111/jre.12128

    Article  CAS  PubMed  Google Scholar 

  9. Finoti LS, Anovazzi G, Pigossi SC, Corbi SC, Teixeira SR, Braido GV, Kim YJ, Orrico SR, Cirelli JA, Mayer MP, Scarel-Caminaga RM (2013) Periodontopathogens levels and clinical response to periodontal therapy in individuals with the interleukin-4 haplotype associated with susceptibility to chronic periodontitis. Eur J Clin Microbiol Infect Dis 32(12):1501–1509. doi:10.1007/s10096-013-1903-z

    Article  CAS  PubMed  Google Scholar 

  10. Cichon P, Crawford L, Grimm WD (1998) Early-onset periodontitis associated with Down’s syndrome—clinical interventional study. Ann Periodontol 3(1):370–380

    Article  CAS  PubMed  Google Scholar 

  11. Shapira L, Wilensky A, Kinane DF (2005) Effect of genetic variability on the inflammatory response to periodontal infection. J Clin Periodontol 32(Suppl 6):72–86

    Article  CAS  PubMed  Google Scholar 

  12. Cavalcante LB, Tanaka MH, Pires JR, Apponi LH, Aparecida Giro EM, Valentini SR, Palomari Spolidório DM, Capela MV, Rossa C Jr, Scarel-Caminaga RM (2012) Expression of the interleukin-10 signaling pathway genes in individuals with Down syndrome and periodontitis. J Periodontol 83(7):926–935. doi:10.1902/jop.2011.110056

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka MH, Giro EM, Cavalcante LB, Pires JR, Apponi LH, Valentini SR, Spolidório DM, Capela MV, Rossa C Jr, Scarel-Caminaga RM (2012) Expression of interferon-γ, interferon-α and related genes in individuals with Down syndrome and periodontitis. Cytokine 60(3):875–881. doi:10.1016/j.cyto.2012.08.020

    Article  CAS  PubMed  Google Scholar 

  14. Bloemers BL, van Bleek GM, Kimpen JL, Bont L (2010) Distinct abnormalities in the innate immune system of children with Down syndrome. J Pediatr 156(5):804–809, 809.e1–809.e5. doi:10.1016/j.jpeds.2009.12.006

    Article  CAS  PubMed  Google Scholar 

  15. Kusters MA, Verstegen RH, Gemen EF, de Vries E (2009) Intrinsic defect of the immune system in children with Down syndrome: a review. Clin Exp Immunol 156(2):189–193. doi:10.1111/j.1365-2249.2009.03890.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Yasui K, Shinozaki K, Nakazawa T, Agematsu K, Komiyama A (1999) Presenility of granulocytes in Down syndrome individuals. Am J Med Genet 84(5):406–412

    Article  CAS  PubMed  Google Scholar 

  17. Martinez-Martinez RE, Loyola-Rodriguez JP, Bonilla-Garro SE, Patiño-Marin N, Haubek D, Amano A, Poulsen K (2013) Characterization of periodontal biofilm in Down syndrome patients: a comparative study. J Clin Pediatr Dent 37(3):289–295

    CAS  PubMed  Google Scholar 

  18. Amano A, Kishima T, Kimura S, Takiguchi M, Ooshima T, Hamada S, Morisaki I (2000) Periodontopathic bacteria in children with Down syndrome. J Periodontol 71(2):249–255. doi:10.1902/jop.2000.71.2.249

    Article  CAS  PubMed  Google Scholar 

  19. Hanookai D, Nowzari H, Contreras A, Morrison JL, Slots J (2000) Herpesviruses and periodontopathic bacteria in trisomy 21 periodontitis. J Periodontol 71(3):376–384. doi:10.1902/jop.2000.71.3.376

    Article  CAS  PubMed  Google Scholar 

  20. Sakellari D, Belibasakis G, Chadjipadelis T, Arapostathis K, Konstantinidis A (2001) Supragingival and subgingival microbiota of adult patients with Down’s syndrome. Changes after periodontal treatment. Oral Microbiol Immunol 16(6):376–382

    Article  CAS  PubMed  Google Scholar 

  21. Murakami J, Kato T, Kawai S, Akiyama S, Amano A, Morisaki I (2008) Cellular motility of Down syndrome gingival fibroblasts is susceptible to impairment by Porphyromonas gingivalis invasion. J Periodontol 79(4):721–727. doi:10.1902/jop.2008.070400

    Article  CAS  PubMed  Google Scholar 

  22. Yamazaki-Kubota T, Miyamoto M, Sano Y, Kusumoto M, Yonezu T, Sugita K, Okuda K, Yakushiji M, Ishihara K (2010) Analysis of matrix metalloproteinase (MMP-8 and MMP-2) activity in gingival crevicular fluid from children with Down’s syndrome. J Periodontal Res 45(2):170–176. doi:10.1111/j.1600-0765.2009.01214.x

    Article  CAS  PubMed  Google Scholar 

  23. Khocht A, Yaskell T, Janal M, Turner BF, Rams TE, Haffajee AD, Socransky SS (2012) Subgingival microbiota in adult Down syndrome periodontitis. J Periodontal Res 47(4):500–507. doi:10.1111/j.1600-0765.2011.01459.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Reuland-Bosma W, van der Reijden WA, van Winkelhoff AJ (2001) Absence of a specific subgingival microflora in adults with Down’s syndrome. J Clin Periodontol 28(11):1004–1009

    Article  CAS  PubMed  Google Scholar 

  25. Petersen PE (2003) The World Oral Health Report 2003: continuous improvement of oral health in the 21st century—the approach of the WHO Global Oral Health Programme. Community Dent Oral Epidemiol 31(Suppl 1):3–23

    Article  PubMed  Google Scholar 

  26. Teles RP, Likhari V, Socransky SS, Haffajee AD (2009) Salivary cytokine levels in subjects with chronic periodontitis and in periodontally healthy individuals: a cross-sectional study. J Periodontal Res 44(3):411–417. doi:10.1111/j.1600-0765.2008.01119.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Amano A, Nakagawa I, Kataoka K, Morisaki I, Hamada S (1999) Distribution of Porphyromonas gingivalis strains with fimA genotypes in periodontitis patients. J Clin Microbiol 37(5):1426–1430

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Mullally BH, Dace B, Shelburne CE, Wolff LF, Coulter WA (2000) Prevalence of periodontal pathogens in localized and generalized forms of early-onset periodontitis. J Periodontal Res 35(4):232–241

    Article  CAS  PubMed  Google Scholar 

  29. Shelburne CE, Prabhu A, Gleason RM, Mullally BH, Coulter WA (2000) Quantitation of Bacteroides forsythus in subgingival plaque comparison of immunoassay and quantitative polymerase chain reaction. J Microbiol Methods 39(2):97–107

    Article  CAS  PubMed  Google Scholar 

  30. Teixeira SR, Mattarazo F, Feres M, Figueiredo LC, de Faveri M, Simionato MR, Mayer MP (2009) Quantification of Porphyromonas gingivalis and fimA genotypes in smoker chronic periodontitis. J Clin Periodontol 36(6):482–487. doi:10.1111/j.1600-051X.2009.01411.x

    Article  PubMed  Google Scholar 

  31. Meskin LH, Farsht EM, Anderson DL (1968) Prevalence of Bacteroides melaninogenicus in the gingival crevice area of institutionalized trisomy 21 and cerebral palsy patients and normal children. J Periodontol 39(6):326–328

    CAS  PubMed  Google Scholar 

  32. Cutress TW, Brown RH, Guy EM (1970) Occurrence of some bacterial species in the dental plaque of trisomic 21 (mongoloid), other mentally retarded, and normal subjects. N Z Dent J 66(304):153–161

    CAS  PubMed  Google Scholar 

  33. Reuland-Bosma W, van Dijk J (1986) Periodontal disease in Down’s syndrome: a review. J Clin Periodontol 13(1):64–73

    Article  CAS  PubMed  Google Scholar 

  34. Amano A, Kishima T, Akiyama S, Nakagawa I, Hamada S, Morisaki I (2001) Relationship of periodontopathic bacteria with early-onset periodontitis in Down’s syndrome. J Periodontol 72(3):368–373. doi:10.1902/jop.2001.72.3.368

    Article  CAS  PubMed  Google Scholar 

  35. Missailidis CG, Umeda JE, Ota-Tsuzuki C, Anzai D, Mayer MP (2004) Distribution of fimA genotypes of Porphyromonas gingivalis in subjects with various periodontal conditions. Oral Microbiol Immunol 19(4):224–229. doi:10.1111/j.1399-302X.2004.00140.x

    Article  CAS  PubMed  Google Scholar 

  36. Griffen AL, Becker MR, Lyons SR, Moeschberger ML, Leys EJ (1998) Prevalence of Porphyromonas gingivalis and periodontal health status. J Clin Microbiol 36(11):3239–3242

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Sasaki Y, Sumi Y, Miyazaki Y, Hamachi T, Nakata M (2004) Periodontal management of an adolescent with Down’s syndrome—a case report. Int J Paediatr Dent 14(2):127–135

    Article  CAS  PubMed  Google Scholar 

  38. Socransky SS, Haffajee AD (2000) Periodontal microbial ecology. Periodontol 2000 38:135–187. doi:10.1111/j.1600-0757.2005.00107.x

    Article  Google Scholar 

  39. Cugini MA, Haffajee AD, Smith C, Kent RL Jr, Socransky SS (2000) The effect of scaling and root planing on the clinical and microbiological parameters of periodontal diseases: 12-month results. J Clin Periodontol 27(1):30–36

    Article  CAS  PubMed  Google Scholar 

  40. Teles RP, Patel M, Socransky SS, Haffajee AD (2008) Disease progression in periodontally healthy and maintenance subjects. J Periodontol 79(5):784–794. doi:10.1902/jop.2008.070485

    Article  CAS  PubMed  Google Scholar 

  41. Muchová J, Sustrová M, Garaiová I, Liptáková A, Blazícek P, Kvasnicka P, Pueschel S, Duracková Z (2001) Influence of age on activities of antioxidant enzymes and lipid peroxidation products in erythrocytes and neutrophils of Down syndrome patients. Free Radic Biol Med 31(4):499–508

    Article  PubMed  Google Scholar 

  42. Zaldivar-Chiapa RM, Arce-Mendoza AY, De La Rosa-Ramírez M, Caffesse RG, Solis-Soto JM (2005) Evaluation of surgical and non-surgical periodontal therapies, and immunological status, of young Down’s syndrome patients. J Periodontol 76(7):1061–1065. doi:10.1902/jop.2005.76.7.1061

    Article  CAS  PubMed  Google Scholar 

  43. Sreedevi H, Munshi AK (1998) Neutrophil chemotaxis in Down syndrome and normal children to Actinobacillus actinomycetemcomitans. J Clin Pediatr Dent 22(2):141–146

    CAS  PubMed  Google Scholar 

  44. Izumi Y, Sugiyama S, Shinozuka O, Yamazaki T, Ohyama T, Ishikawa I (1989) Defective neutrophil chemotaxis in Down’s syndrome patients and its relationship to periodontal destruction. J Periodontol 60(5):238–242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the DS patients for their participation in this study, as well as the collaboration of their families, 5 of the Associations of Parents and Friends of Disabled Patients (APAEs) of Araraquara and surrounding cities (São Carlos, Catanduva, Matão and Taquaritinga) and another institution Down Syndrome Association of São José dos Campos (ASIN). This study was supported by the Foundation for Research Support of the State of São Paulo (FAPESP) grant no. 2011/23798-2 and Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES-BEX 0225/13-4).

Conflict of interest

The authors declare no conflicts of interest with respect to the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. A. Giro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, M.H., Rodrigues, T.O., Finoti, L.S. et al. The effect of conventional mechanical periodontal treatment on red complex microorganisms and clinical parameters in Down syndrome periodontitis patients: a pilot study. Eur J Clin Microbiol Infect Dis 34, 601–608 (2015). https://doi.org/10.1007/s10096-014-2268-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2268-7

Keywords

Navigation