Skip to main content
Log in

Multi-center evaluation of the VITEK® MS system for mass spectrometric identification of non-Enterobacteriaceae Gram-negative bacilli

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Studies have demonstrated that matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid, accurate method for the identification of clinically relevant bacteria. The purpose of this study was to evaluate the performance of the VITEK MS v2.0 system (bioMérieux) for the identification of the non-Enterobacteriaceae Gram-negative bacilli (NEGNB). This multi-center study tested 558 unique NEGNB clinical isolates, representing 18 genera and 33 species. Results obtained with the VITEK MS v2.0 were compared with reference 16S rRNA gene sequencing and when indicated recA sequencing and phenotypic analysis. VITEK MS v2.0 provided an identification for 92.5 % of the NEGNB isolates (516 out of 558). VITEK MS v2.0 correctly identified 90.9 % of NEGNB (507 out of 558), 77.8 % to species level and 13.1 % to genus level with multiple species. There were four isolates (0.7 %) incorrectly identified to genus level and five isolates (0.9 %), with one incorrect identification to species level. The remaining 42 isolates (7.5 %) were either reported as no identification (5.0 %) or called “mixed genera” (2.5 %) since two or more different genera were identified as possible identifications for the test organism. These findings demonstrate that the VITEK MS v2.0 system provides accurate results for the identification of a challenging and diverse group of Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bassetti M, Taramasso L, Giacobbe DR, Pelosi P (2012) Management of ventilator-associated pneumonia: epidemiology, diagnosis and antimicrobial therapy. Expert Rev Anti Infect Ther 10:585–596

    Article  CAS  PubMed  Google Scholar 

  2. Bergfors E, Trollfors B, Taranger J, Lagergård T, Sundh V, Zackrisson G (1999) Parapertussis and pertussis: differences and similarities in incidence, clinical course, and antibody responses. Int J Infect Dis 3:140–146

    Article  CAS  PubMed  Google Scholar 

  3. Bos AC, Beemsterboer P, Wolfs TF, Versteegh FG, Arets HG (2011) Bordetella species in children with cystic fibrosis: what do we know? The role in acute exacerbations and chronic course. J Cyst Fibros 10:307–312

    Article  CAS  PubMed  Google Scholar 

  4. Daniels NA (2011) Vibrio vulnificus oysters: pearls and perils. Clin Infect Dis 52:788–792

    Article  PubMed  Google Scholar 

  5. Dortet L, Legrand P, Soussy CJ, Cattoir V (2006) Bacterial identification, clinical significance, and antimicrobial susceptibilities of Acinetobacter ursingii and Acinetobacter schindleri, two frequently misidentified opportunistic pathogens. J Clin Microbiol 44:4471–4478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Howard A, O’Donoghue M, Feeney A, Sleator RD (2012) Acinetobacter baumannii: an emerging opportunistic pathogen. Virulence 3:243–250

    Article  PubMed  Google Scholar 

  7. Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Lai CC, Teng LJ, Hsueh PR, Yuan A, Tsai KC, Tang JL, Tien HF (2004) Clinical and microbiological characteristics of Rhizobium radiobacter infections. Clin Infect Dis 38:149–153

    Article  CAS  PubMed  Google Scholar 

  9. Lipuma JJ (2005) Update on the Burkholderia cepacia complex. Curr Opin Pulm Med 11:528–533

    Article  PubMed  Google Scholar 

  10. Lipuma JJ (2010) The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 23:299–323

    Article  PubMed Central  PubMed  Google Scholar 

  11. Vila J, Pachón J (2012) Therapeutic options for Acinetobacter baumannii infections: an update. Expert Opin Pharmacother 13:2319–2336

    Article  CAS  PubMed  Google Scholar 

  12. Govan JR, Brown PH, Maddison J, Doherty CJ, Nelson JW, Dodd M, Greening AP, Webb AK (1993) Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 342:15–19

    Article  CAS  PubMed  Google Scholar 

  13. Hadjiliadis D (2007) Special considerations for patients with cystic fibrosis undergoing lung transplantation. Chest 131:1224–1231

    Article  PubMed  Google Scholar 

  14. Ferreira L, Sánchez-Juanes F, Garcia-Fraile P, Rivas R, Mateos PF, Martínez-Molina E, González-Buitrago JM, Velázquez E (2011) MALDI-TOF mass spectrometry is a fast and reliable platform for identification and ecological studies of species from family Rhizobiaceae. PLoS One 6(5):e20223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Barzilay EJ, Schaad N, Magloire R, Mung KS, Boncy J, Dahourou GA, Mintz ED, Steenland MW, Vertefeuille JF, Tappero JW (2013) Cholera surveillance during the Haiti epidemic—the first 2 years. N Engl J Med 368:599–609

    Article  CAS  PubMed  Google Scholar 

  16. Benagli C, Demarta A, Caminada AP, Ziegler D, Petrini O (2012) A rapid MALDI-TOF MS identification database at genospecies level for clinical and environmental Aeromonas strains. PLoS One 7(10):e48441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Newton AE, Heiman KE, Schmitz A, Török T, Apostolou A, Hanson H, Gounder P, Bohm S, Kurkjian K, Parsons M, Talkington D, Stroika S, Madoff LC, Elson F, Sweat D, Cantu V, Akwari O, Mahon BE, Mintz ED (2011) Cholera in United States associated with epidemic in Hispaniola. Emerg Infect Dis 17:2166–2168

    PubMed  Google Scholar 

  18. Weber DJ, Wolfson JS, Swartz MN, Hooper DC (1984) Pasteurella multocida infections. Report of 34 cases and review of the literature. Med (Baltimore) 63:133–154

    Article  CAS  Google Scholar 

  19. Brisse S, Stefani S, Verhoef J, Van Belkum A, Vandamme P, Goessens W (2002) Comparative evaluation of the BD Phoenix and VITEK 2 automated instruments for identification of isolates of the Burkholderia cepacia complex. J Clin Microbiol 40:1743–1748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Chatzigeorgiou KS, Sergentanis TN, Tsiodras S, Hamodrakas SJ, Bagos PG (2011) Phoenix 100 versus Vitek 2 in the identification of Gram-positive and Gram-negative bacteria: a comprehensive meta-analysis. J Clin Microbiol 49:3284–3291

    Article  PubMed Central  PubMed  Google Scholar 

  21. Donay JL, Mathieu D, Fernandes P, Prégermain C, Bruel P, Wargnier A, Casin I, Weill FX, Lagrange PH, Herrmann JL (2004) Evaluation of the automated Phoenix system for potential routine use in the clinical microbiology laboratory. J Clin Microbiol 42:1542–1546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. McGregor A, Schio F, Beaton S, Boulton V, Perman M, Gilbert G (1995) The MicroScan WalkAway diagnostic microbiology system—an evaluation. Pathology 27:172–176

    Article  CAS  PubMed  Google Scholar 

  23. Stefaniuk E, Baraniak A, Gniadkowski M, Hryniewicz W (2003) Evaluation of the BD Phoenix automated identification and susceptibility testing system in clinical microbiology laboratory practice. Eur J Clin Microbiol Infect Dis 22:479–485

    Article  CAS  PubMed  Google Scholar 

  24. Bizzini A, Jaton K, Romo D, Bille J, Prod’hom G, Greub G (2011) Matrix-assisted laser desorption ionization-time of flight mass spectrometry as an alternative to 16S rRNA gene sequencing for identification of difficult-to-identify bacterial strains. J Clin Microbiol 49:693–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Ferroni A, Sermet-Gaudelus I, Abachin E, Quesne G, Lenoir G, Berche P, Gaillard JL (2002) Use of 16S rRNA sequencing for identification of nonfermenting gram-negative bacilli recovered from patients attending a cystic fibrosis center. J Clin Microbiol 40:3793–3797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Mellmann A, Cloud J, Maier T, Keckevoet U, Ramminger I, Iwen P, Dunn J, Hall G, Wilson D, Lasala P, Kostrzewa M, Harmsen D (2008) Evaluation of matrix-assisted laser desorption ionization-time-of-flight mass spectrometry in comparison to 16S rRNA gene sequencing for species identification of nonfermenting bacteria. J Clin Microbiol 46:1946–1954

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J, García-Valdés (2012) Concordance between whole-cell matrix-assisted laser-desorption/ionizatio time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas. Syst Appl Microbiol 35:455–464

    Article  CAS  PubMed  Google Scholar 

  28. Álvarez-Buylla A, Culebras E, Picazo JJ (2012) Identification of Acinetobacter species: is brucker biotyper MALDI-TOF mass spectrometry a good alternative to molecular techniques? Infect Gen Evol 12:345–349

    Article  Google Scholar 

  29. Benagli C, Rossi V, Dolina M, Tonolla M, Petrini O (2011) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for the identification of clinically relevant bacteria. PLoS One 6(1):e16424

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G (2010) Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 48:1549–1554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Carbonnelle E, Grohs P, Jacquier H, Day N, Tenza S, Dewailly A, Vissouarn O, Rottman M, Herrmann JL, Podglajen I, Raskine L (2012) Robustness of two MALDI-TOF mass spectrometry systems for bacterial identification. J Microbiol Methods 89:133–136

    Article  CAS  PubMed  Google Scholar 

  32. Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, Schrenzel J (2010) Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48:1169–1175

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Degand N, Carbonnelle E, Dauphin B, Beretti JL, Le Bourgeois M, Sermet-Gaudelus I, Segonds C, Berche P, Nassif X, Ferroni A (2008) Matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification on nonfermenting Gram-negative bacilli isolated from cystic fibrosis patients. J Clin Microbiol 46:3361–3367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Desai AP, Stanley T, Atuan M, McKey J, Lipuma JJ, Rogers B, Jerris R (2012) Use of matrix assisted laser desorption ionization-time of flight mass spectrometry in a paediatric clinical laboratory for identification of bacteria commonly isolated from cystic fibrosis patients. J Clin Pathol 65:835–838

    Article  PubMed  Google Scholar 

  35. Dieckman R, Strauch E, Alter T (2010) Rapid identification and characterization of Vibrio species using whole cell MALDI-TOF mass spectrometry. J Appl Microbiol 109:199–211

    Google Scholar 

  36. Dubois D, Grare M, Prere MF, Segonds C, Marty N, Oswald E (2012) Performances of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for rapid identification of bacteria in routine clinical microbiology. J Clin Microbiol 50:2568–2576

    Article  PubMed Central  PubMed  Google Scholar 

  37. Eigner U, Holfelder M, Oberdorfer K, Betz-Wild U, Bertsch D, Fahr AM (2009) Performance of a matrix-assisted laser desorption ionization-time-of-flight mass spectrometry system for the identification of bacterial isolates in the clinical routine laboratory. Clin Lab 55:289–296

    CAS  PubMed  Google Scholar 

  38. El-Bouri K, Johnston S, Rees E, Thomas I, Bome-Mannathoko N, Jones C, Reid M, Ben-Ismaeil B, Davies AR, Harris LG, Mack D (2012) Comparison of bacterial identification by MALDI-TOF mass spectrometry and conventional diagnostic microbiology methods: agreement, speed and cost implications. Br J Biomed Sci 69:47–55

    CAS  PubMed  Google Scholar 

  39. Fernández-Olmos A, Garcia-Castillo M, Morosini M-I, Lamas A, Maiz L, Canon R (2012) MALDI-TOF MS improves routine identification of non-fermenting Gram negative isolates from cystic fibrosis patients. J Cyst Fibros 11:59–62

    Article  PubMed  Google Scholar 

  40. Ferroni A, Suarez S, Beretti JL, Dauphin B, Bille E, Meyer J, Bougnoux ME, Alanio A, Berche P, Nassif X (2010) Real-time identification of bacteria and Candida species in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:1542–1548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Hazen TH, Martinez RJ, Chen Y, Lafon PC, Garrett NM, Parsons MB, Bopp CA, Sullards MC, Sobecky PA (2009) Rapid identification of Vibrio parahaemolyticus by whole-cell lysate matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 75:6745–6756

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lambiase A, Del Pezzo M, Cerbone D, Raia V, Rossano F, Catania MR (2013) Rapid identification of Burkholderia cepacia complex species recovered from cystic fibrosis patients using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. J Microbiol Methods 92:145–149

    Article  CAS  PubMed  Google Scholar 

  43. Marko DC, Saffert RT, Cunningham SA, Hyman J, Walsh J, Arbefeville S, Howard W, Pruessner J, Safwat N, Cockerill FR, Bossler AD, Patel R, Richter SS (2012) Evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of nonfermenting Gram-negative bacilli isolated from cultures from cystic fibrosis patients. J Clin Microbiol 50:2034–2039

    Article  PubMed Central  PubMed  Google Scholar 

  44. Martiny D, Busson L, Wybo I, El Haj RA, Dediste A, Vandenberg O (2012) Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:1313–1325

    Article  PubMed Central  PubMed  Google Scholar 

  45. Risch M, Radjenovic D, Han JN, Wydler M, Nydegger U, Risch L (2010) Compariosn of MALDI TOF with conventional identification of clinically relevant bacteria. Swiss Med Wkly 140:w13095

    PubMed  Google Scholar 

  46. Sedo O, Vorac A, Zdrahal Z (2011) Optimization of mass spectral profiling in MALDI-TOF MS profiling of Acinetobacter species. Syst Appl Microbiol 34:30–34

    Article  CAS  PubMed  Google Scholar 

  47. Stevenson LG, Drake SK, Murray PR (2010) Rapid identification of bacteria in positive blood culture broths by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 48:444–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Vanlaere E, Sergeant K, Dawyndt P, Kallow W, Erhard M, Sutton H, Dare D, Devreese B, Samyn B, Vandamme P (2008) Matrix-assisted laser desorption ionization-time of flight mass spectrometry of intact cells allows rapid identification of Burkholderia cepacia complex. J Microbiol Meth 75:279–286

    Article  CAS  Google Scholar 

  49. Van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907

    Article  PubMed Central  PubMed  Google Scholar 

  50. Bizzini A, Greub G (2010) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect 16:1614–1619

    Article  CAS  PubMed  Google Scholar 

  51. Croxatto A, Prod’hom G, Greub G (2012) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36:380–407

    Article  CAS  PubMed  Google Scholar 

  52. Sauer S, Freiwald A, Maier T, Kube M, Reinhardt R, Kostrzewa M, Geider K (2008) Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 3(7):e2843

    Article  PubMed Central  PubMed  Google Scholar 

  53. Van Belkum A, Welker M, Erhard M, Chatellier S (2012) Biomedical mass spectrometry in today’s and tomorrow’s clinical microbiology laboratories. J Clin Microbiol 50:1513–1517

    Article  PubMed Central  PubMed  Google Scholar 

  54. Welker M, Moore ER (2011) Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 34:2–11

    Article  CAS  PubMed  Google Scholar 

  55. Welker M (2011) Proteomics for routine identification of microorganisms. Proteomics 11:3143–3153

    Article  CAS  PubMed  Google Scholar 

  56. Rychert J, Burnham C-A, Bythrow M, Garner C, Ginocchio CC, Jennemann R, Lewinski MA, Manji R, Mochon AB, Procop GW, Richter SS, Sercia L, Westblade LF, Ferraro MJ, Branda JA (2013) Multicenter evaluation of the VITEK MS MALDI-TOF mass spectrometry system for the identification of gram-positive aerobic bacteria. J Clin Microbiol 51:2225–2231

    Article  PubMed Central  PubMed  Google Scholar 

  57. Clinical and Laboratory Standards Institute (2004) Nucleic acid sequencing methods in diagnostic laboratory medicine. MM09-A. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  58. Clinical and Laboratory Standards Institute (2008) Interpretive criteria for identification of bacteria and fungi by DNA target sequencing. MM18-A. Clinical and Laboratory Standards Institute, Wayne

    Google Scholar 

  59. Cesarini S, Bevivino A, Tabacchioni S, Chiarini L, Dalmastri C (2009) RecA gene sequence and Multilocus Sequence Typing for species-level resolution of Burkholderia cepacia complex isolates. Lett Appl Microbiol 49:580–588

    Article  CAS  PubMed  Google Scholar 

  60. Espinal P, Seifert H, Dijkshoorn L, Vila J, Roca I (2011) Rapid and accurate identification of egnomic species from the Acinetobacter baumannii (Ab) group by MALDI-TOF MS. Clin Microbiol Infect 18:1097–1103

    Article  PubMed  Google Scholar 

  61. Bessede E, Angla-Gre M, Delagarde Y, Sep Hieng S, Menard A, Megraud F (2011) Matrix-assisted laser-desorption/ionization biotyper: experience in the routine of a University hospital. Clin Microbiol Infect 17:533–538

    Article  CAS  PubMed  Google Scholar 

  62. Gaillot O, Blondiaux N, Loïez C, Wallet F, Lemaître N, Herwegh S, Courcol RJ (2011) Cost-effectiveness of switch to matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine bacterial identification. J Clin Microbiol 49:4412

    Article  PubMed Central  PubMed  Google Scholar 

  63. Neville SA, Lecordier A, Ziochos H, Chater MJ, Gosbell IB, Maley MW, van Hal SJ (2011) Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. J Clin Microbiol 49:2980–2984

    Article  PubMed Central  PubMed  Google Scholar 

  64. Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC (2012) Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 50:3301–3308

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This study was sponsored by bioMérieux, Durham. NC, USA. We sincerely thank the technical staff at each clinical trial site for their support. We thank David Pincus, Constance Bradford, and Karen MacDonald for providing technical support and statistical analysis.

Transparency declaration

John A. Branda, Jenna A. Rychert, and Mary Jane Farraro have received research funding from bioMérieux and Becton Dickinson and Co. Christine C. Ginocchio has received research funding and/or consulting fees from bioMérieux, Becton Dickinson, Biofire, Biohelix, Nanosphere, Curetis, and Luminex. Gary Procop has received research funding from bioMérieux, Bruker, CDC and Luminex. Sandra S. Richter has received research funding from bioMérieux, Nanosphere, and Forest Laboratories. Carey-Ann Burnham has received research funding from bioMérieux, Accler8, Cepheid, and T2 Biosystems. None of the other authors has any conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Ginocchio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manji, R., Bythrow, M., Branda, J.A. et al. Multi-center evaluation of the VITEK® MS system for mass spectrometric identification of non-Enterobacteriaceae Gram-negative bacilli. Eur J Clin Microbiol Infect Dis 33, 337–346 (2014). https://doi.org/10.1007/s10096-013-1961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1961-2

Keywords

Navigation