Skip to main content
Log in

Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

This multicenter study evaluated the accuracy of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry identifications from the VITEK MS system (bioMérieux, Marcy l’Etoile, France) for Enterobacteriaceae typically encountered in the clinical laboratory. Enterobacteriaceae isolates (n = 965) representing 17 genera and 40 species were analyzed on the VITEK MS system (database v2.0), in accordance with the manufacturer’s instructions. Colony growth (≤72 h) was applied directly to the target slide. Matrix solution (α-cyano-4-hydroxycinnamic acid) was added and allowed to dry before mass spectrometry analysis. On the basis of the confidence level, the VITEK MS system provided a species, genus only, or no identification for each isolate. The accuracy of the mass spectrometric identification was compared to 16S rRNA gene sequencing performed at MIDI Labs (Newark, DE). Supplemental phenotypic testing was performed at bioMérieux when necessary. The VITEK MS result agreed with the reference method identification for 96.7 % of the 965 isolates tested, with 83.8 % correct to the species level and 12.8 % limited to a genus-level identification. There was no identification for 1.7 % of the isolates. The VITEK MS system misidentified 7 isolates (0.7 %) as different genera. Three Pantoea agglomerans isolates were misidentified as Enterobacter spp. and single isolates of Enterobacter cancerogenus, Escherichia hermannii, Hafnia alvei, and Raoultella ornithinolytica were misidentified as Klebsiella oxytoca, Citrobacter koseri, Obesumbacterium proteus, and Enterobacter aerogenes, respectively. Eight isolates (0.8 %) were misidentified as a different species in the correct genus. The VITEK MS system provides reliable mass spectrometric identifications for Enterobacteriaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57:2935–2939

    Article  CAS  Google Scholar 

  2. Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int J Mass Spectrom Ion Proc 78:53–68

    Article  CAS  Google Scholar 

  3. Lay JO Jr (2001) MALDI-TOF mass spectrometry of bacteria. Mass Spectrom Rev 20:172–194

    Article  PubMed  CAS  Google Scholar 

  4. Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153

    Article  CAS  Google Scholar 

  5. Welker M, Moore ERB (2011) Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol 34:2–11

    Article  PubMed  CAS  Google Scholar 

  6. Conway GC, Smole SC, Sarracino DA, Arbeit RD, Leopold PE (2001) Phyloproteomics: species identification of Enterobacteriaceae using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Mol Microbiol Biotechnol 3:103–112

    PubMed  CAS  Google Scholar 

  7. Abbott SL (2011) Klebsiella, Enterobacter, Citrobacter, Serratia, Plesiomonas, and other Enterobacteriaceae. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (eds) Manual of clinical microbiology, 10th edn. ASM Press, Washington DC, pp 639–657

    Google Scholar 

  8. Nordmann P, Naas T, Poirel L (2011) Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 17:1791–1798

    Article  PubMed  CAS  Google Scholar 

  9. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2011) GenBank. Nucleic Acids Res 39:D32–D37

    Article  PubMed  CAS  Google Scholar 

  10. Devulder G, Perrière G, Baty F, Flandrois JP (2003) BIBI, a bioinformatics bacterial identification tool. J Clin Microbiol 41:1785–1787

    Article  PubMed  CAS  Google Scholar 

  11. Clinical and Laboratory Standards Institute (CLSI) (2008) Interpretive criteria for identification of bacteria and fungi by DNA target sequencing; Approved guideline. CLSI document MM18-A. CLSI, Wayne, PA, pp 25–29

    Google Scholar 

  12. Clarridge JE 3rd (2004) Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin Microbiol Rev 17:840–862

    Article  PubMed  CAS  Google Scholar 

  13. Janda JM, Abbott SL (2007) 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol 45:2761–2764

    Article  PubMed  CAS  Google Scholar 

  14. Johnson JR (2000) Shigella and Escherichia coli at the crossroads: machiavellian masqueraders or taxonomic treachery? J Med Microbiol 49:583–585

    PubMed  CAS  Google Scholar 

  15. van den Beld MJ, Reubsaet FA (2012) Differentiation between Shigella, enteroinvasive Escherichia coli (EIEC) and noninvasive Escherichia coli. Eur J Clin Microbiol Infect Dis 31:899–904

    Article  PubMed  Google Scholar 

  16. Nataro JP, Bopp CA, Fields PI, Kaper JB, Strockbine NA (2011) Escherichia, Shigella, and Salmonella. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (eds) Manual of clinical microbiology, 10th edn. ASM Press, Washington DC, pp 603–626

    Google Scholar 

  17. Sharma M, Dogra BB, Misra R, Gandham N, Sardar M, Jadhav S (2012) Multidrug resistant Pantoea agglomerans in a patient with septic arthritis—a rare report from India. Int J Microbiol Res 4:263–265

    Google Scholar 

  18. Janda JM, Abbott SL, Cheung WK, Hanson DF (1994) Biochemical identification of citrobacteria in the clinical laboratory. J Clin Microbiol 32:1850–1854

    PubMed  CAS  Google Scholar 

  19. Paauw A, Caspers MP, Schuren FH, Leverstein-van Hall MA, Delétoile A, Montijn RC, Verhoef J, Fluit AC (2008) Genomic diversity within the Enterobacter cloacae complex. PLoS One 3:e3018

    Article  PubMed  Google Scholar 

  20. Dieckmann R, Malorny B (2011) Rapid screening of epidemiologically important Salmonella enterica subsp. enterica serovars by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 77:4136–4146

    Article  PubMed  CAS  Google Scholar 

  21. Kuhns M, Zautner AE, Rabsch W, Zimmermann O, Weig M, Bader O, Groß U (2012) Rapid discrimination of Salmonella enterica serovar Typhi from other serovars by MALDI-TOF mass spectrometry. PLoS One 7:e40004

    Article  PubMed  CAS  Google Scholar 

  22. Cherkaoui A, Hibbs J, Emonet S, Tangomo M, Girard M, Francois P, Schrenzel J (2010) Comparison of two matrix-assisted laser desorption ionization-time of flight mass spectrometry methods with conventional phenotypic identification for routine identification of bacteria to the species level. J Clin Microbiol 48:1169–1175

    Article  PubMed  CAS  Google Scholar 

  23. Saffert RT, Cunningham SA, Ihde SM, Jobe KEM, Mandrekar J, Patel R (2011) Comparison of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometer to BD Phoenix automated microbiology system for identification of gram-negative bacilli. J Clin Microbiol 49:887–892

    Article  PubMed  Google Scholar 

  24. Drancourt M, Bollet C, Carta A, Rousselier P (2001) Phylogenetic analyses of Klebsiella species delineate Klebsiella and Raoultella gen. nov., with description of Raoultella ornithinolytica comb. nov., Raoultella terrigena comb. nov. and Raoultella planticola comb. nov. Int J Syst Evol Microbiol 51:925–932

    Article  PubMed  CAS  Google Scholar 

  25. Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G (2010) Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 48:1549–1554

    Article  PubMed  CAS  Google Scholar 

  26. Martiny D, Busson L, Wybo I, El Haj RA, Dediste A, Vandenberg O (2012) Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:1313–1325

    Article  PubMed  Google Scholar 

  27. Gaillot O, Blondiaux N, Loïez C, Wallet F, Lemaître N, Herwegh S, Courcol RJ (2011) Cost-effectiveness of switch to matrix-assisted laser desorption ionization-time of flight mass spectrometry for routine bacterial identification. J Clin Microbiol 49:4412

    Article  PubMed  Google Scholar 

  28. Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC (2012) Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol 50:3301–3308

    Article  PubMed  CAS  Google Scholar 

  29. Neville SA, Lecordier A, Ziochos H, Chater MJ, Gosbell IB, Maley MW, van Hal SJ (2011) Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. J Clin Microbiol 49:2980–2984

    Article  PubMed  Google Scholar 

  30. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this project was provided by bioMérieux.

Conflict of interest

S.S. Richter has received a speaker honorarium from bioMérieux and research funding from bioMérieux, Nanosphere, Pocared, and Forest Laboratories. J.A. Branda, J.A. Rychert, and M.J. Ferraro have received research funding from bioMérieux and Becton Dickinson and Co. C.-A.D. Burnham has received research funding from bioMérieux, Accler8, Cepheid, and T2 Biosystems. C.C. Ginocchio has received research funding and consulting fees from bioMérieux and Becton Dickinson. M.A. Lewinski has received research funding from bioMérieux. G.W. Procop has received research funding from bioMérieux, Bruker, CDC, Pocared, and Luminex. All other authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Richter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter, S.S., Sercia, L., Branda, J.A. et al. Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system. Eur J Clin Microbiol Infect Dis 32, 1571–1578 (2013). https://doi.org/10.1007/s10096-013-1912-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1912-y

Keywords

Navigation