Skip to main content
Log in

Multicenter evaluation of the VITEK MS matrix-assisted laser desorption/ionization–time of flight mass spectrometry system for identification of bacteria, including Brucella, and yeasts

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The use of matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry has proven to be rapid and accurate for the majority of clinical isolates. Some gaps remain concerning rare, emerging, or highly pathogenic species, showing the need to continuously expand the databases. In this multicenter study, we evaluated the accuracy of the VITEK MS v3.2 database in identifying 1172 unique isolates compared to identification by DNA sequence analysis. A total of 93.6% of the isolates were identified to species or group/complex level. A remaining 5.2% of the isolates were identified to the genus level. Forty tests gave a result of no identification (0.9%) and 12 tests (0.3%) gave a discordant identification compared to the reference identification. VITEK MS is also the first MALDI-TOF MS system that is able to delineate the four members of the Acinetobacter baumannii complex at species level without any specific protocol or special analysis method. These findings demonstrate that the VITEK MS v3.2 database is highly accurate for the identification of bacteria and fungi encountered in the clinical laboratory as well as emerging species like Candida auris and the highly pathogenic Brucella species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Non applicable.

References

  1. Branda JA, Rychert J, Burnham CA et al (2014) Multicenter validation of the VITEK MS v2.0 MALDI-TOF mass spectrometry system for the identification of fastidious gram-negative bacteria. Diagn Microbiol Infect Dis 78(2):129–131. https://doi.org/10.1016/j.diagmicrobio.2013.08.013

    Article  CAS  PubMed  Google Scholar 

  2. Garner O, Mochon A, Branda J et al (2014) Multi-centre evaluation of mass spectrometric identification of anaerobic bacteria using the VITEK® MS system. Clin Microbiol Infect 20(4):335–339. https://doi.org/10.1111/1469-0691.12317

    Article  CAS  PubMed  Google Scholar 

  3. Manji R, Bythrow M, Branda JA et al (2014) Multi-center evaluation of the VITEK® MS system for mass spectrometric identification of non-Enterobacteriaceae Gram-negative bacilli. Eur J Clin Microbiol Infect Dis 33(3):337–346. https://doi.org/10.1007/s10096-013-1961-2

    Article  CAS  PubMed  Google Scholar 

  4. Richter SS, Sercia L, Branda JA et al (2013) Identification of Enterobacteriaceae by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry using the VITEK MS system. Eur J Clin Microbiol Infect Dis 32(12):1571–1578. https://doi.org/10.1007/s10096-013-1912-y

    Article  CAS  PubMed  Google Scholar 

  5. Rychert J, Burnham CA, Bythrow M et al (2013) Multicenter evaluation of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria. J Clin Microbiol 51(7):2225–2231. https://doi.org/10.1128/JCM.00682-13

    Article  PubMed  PubMed Central  Google Scholar 

  6. Westblade LF, Jennemann R, Branda JA et al (2013) Multicenter study evaluating the Vitek MS system for identification of medically important yeasts. J Clin Microbiol 51(7):2267–2272. https://doi.org/10.1128/JCM.00680-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Body BA, Beard MA, Slechta ES et al (2018) Evaluation of the Vitek MS v3.0 matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Mycobacterium and Nocardia species. J Clin Microbiol 56(6):e00237–e00218 Published 2018 May 25. 10.1128/JCM.00237-18

    Article  CAS  Google Scholar 

  8. Rychert J, Slechta ES, Barker AP et al (2018) Multicenter evaluation of the Vitek MS v3.0 system for the identification of filamentous fungi. J Clin Microbiol 56(2):e01353–e01317 Published 2018 Jan 24. 10.1128/JCM.01353-17

    Article  CAS  Google Scholar 

  9. Welker M, Van Belkum A, Girard V, Charrier JP, Pincus D (2019) An update on the routine application of MALDI-TOF MS in clinical microbiology. Expert Rev Proteomics 16(8):695–710. https://doi.org/10.1080/14789450.2019.1645603

    Article  CAS  PubMed  Google Scholar 

  10. Janda JM, Lopez DL (2017) Mini review: new pathogen profiles: Elizabethkingia anophelis. Diagn Microbiol Infect Dis 88(2):201–205. https://doi.org/10.1016/j.diagmicrobio.2017.03.007

    Article  PubMed  Google Scholar 

  11. Spivak ES, Hanson KE (2018) Candida auris: an emerging fungal pathogen. J Clin Microbiol 56(2):e01588–e01517 Published 2018 Jan 24. 10.1128/JCM.01588-17

    Article  CAS  Google Scholar 

  12. Rodríguez-Medina N, Barrios-Camacho H, Duran-Bedolla J, Garza-Ramos U (2019) Klebsiella variicola: an emerging pathogen in humans. Emerg Microbes Infect 8(1):973–988. https://doi.org/10.1080/22221751.2019.1634981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramos R, Caceres DH, Perez M et al (2018) Emerging multidrug-resistant Candida duobushaemulonii infections in Panama Hospitals: importance of laboratory surveillance and accurate identification. J Clin Microbiol 56(7):e00371–e00318. Published 2018 Jun 25. https://doi.org/10.1128/JCM.00371-18

    Article  PubMed  PubMed Central  Google Scholar 

  14. Balajee SA, Gribskov JL, Hanley E, Nickle D, Marr KA (2005) Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot Cell 4(3):625–632. https://doi.org/10.1128/EC.4.3.625-632.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kidd SE, Goeman E, Meis JF, Slavin MA, Verweij PE (2015) Multi-triazole-resistant Aspergillus fumigatus infections in Australia. Mycoses. 58(6):350–355. https://doi.org/10.1111/myc.12324

    Article  CAS  PubMed  Google Scholar 

  16. Arastehfar A, Khodavaisy S, Daneshnia F et al (2019) Molecular identification, genotypic diversity, antifungal susceptibility, and clinical outcomes of infections caused by clinically underrated yeasts, Candida orthopsilosis, and Candida metapsilosis: an Iranian multicenter study (2014-2019). Front Cell Infect Microbiol 9:264. Published 2019 Jul 30. https://doi.org/10.3389/fcimb.2019.00264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chusri S, Chongsuvivatwong V, Rivera JI et al (2014) Clinical outcomes of hospital-acquired infection with Acinetobacter nosocomialis and Acinetobacter pittii. Antimicrob Agents Chemother 58(7):4172–4179. https://doi.org/10.1128/AAC.02992-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mesureur J, Ranaldi S, Monnin V, Girard V, Arend S, Welker M et al (2016) A simple and safe protocol for preparing Brucella samples for matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J Clin Microbiol 54:449–452. https://doi.org/10.1128/JCM.02730-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Porte L, García P, Braun S et al (2017) Head-to-head comparison of Microflex LT and Vitek MS systems for routine identification of microorganisms by MALDI-TOF mass spectrometry in Chile. PLoS One 12(5):e0177929. Published 2017 May 18. https://doi.org/10.1371/journal.pone.0177929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wattal C, Oberoi JK, Goel N, Raveendran R, Khanna S (2017) Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) for rapid identification of micro-organisms in the routine clinical microbiology laboratory. Eur J Clin Microbiol Infect Dis 36(5):807–812. https://doi.org/10.1007/s10096-016-2864-9

    Article  CAS  PubMed  Google Scholar 

  21. Girard V, Mailler S, Chetry M et al (2016) Identification and typing of the emerging pathogen Candida auris by matrix-assisted laser desorption ionisation time of flight mass spectrometry. Mycoses. 59(8):535–538. https://doi.org/10.1111/myc.12519

    Article  CAS  PubMed  Google Scholar 

  22. Kwon YJ, Shin JH, Byun SA et al (2019) Candida auris clinical isolates from South Korea: identification, antifungal susceptibility, and genotyping. J Clin Microbiol 57(4):e01624–e01618. Published 2019 Mar 28. https://doi.org/10.1128/JCM.01624-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vijayakumar S, Biswas I, Veeraraghavan B (2019) Accurate identification of clinically important Acinetobacter spp.: an update. Future Sci OA 5(6):FSO395. Published 2019 Jun 27. https://doi.org/10.2144/fsoa-2018-0127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sali M, De Maio F, Tarantino M et al (2018) Rapid and safe one-step extraction method for the identification of Brucella strains at genus and species level by MALDI-TOF mass spectrometry. PLoS One 13(6):e0197864. Published 2018 Jun 5. https://doi.org/10.1371/journal.pone.0197864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Poonawala H, Marrs Conner T, Peaper DR (2018) Closing the brief case: misidentification of Brucella melitensis as Ochrobactrum anthropi by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS). J Clin Microbiol 56(6):e00918–e00917. Published 2018 May 25. https://doi.org/10.1128/JCM.00918-17

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

These data were submitted to US FDA for IVD clearance of the database. We thank Hari Prakash Dwivedi for coordinating the work and reviewing the manuscript and Christine Bouchard for sequencing paperwork. The following reagent was obtained through the NIH Biodefense and Emerging Infections Research Resources Repository, NIAID, NIH: Brucella melitensis, Strain 16M (NCTC 10094), NR-256

Code availability

Non applicable.

Funding

This study was founded by Biomérieux.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoria Girard.

Ethics declarations

Conflict of interest

Victoria Girard, Valérie Monnin, Delphine Giraud, Sophie Polsinelli, Sandra S. Richter, Laurence Bridon, Constance Bradford, Sara Blamey, Jay Li, and David H. Pincus are bioMérieux employees or were bioMérieux employees at the time of the study

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girard, V., Monnin, V., Giraud, D. et al. Multicenter evaluation of the VITEK MS matrix-assisted laser desorption/ionization–time of flight mass spectrometry system for identification of bacteria, including Brucella, and yeasts. Eur J Clin Microbiol Infect Dis 40, 1909–1917 (2021). https://doi.org/10.1007/s10096-021-04242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-021-04242-1

Keywords

Navigation